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Abstract. We establish the definition of associate and conjugate conformal
minimal isometric immersions into the product spaces, where the first factor
is a Riemannian surface and the other is the set of real numbers. When
the Gaussian curvature of the first factor is nonpositive, we prove that an
associate surface of a minimal vertical graph over a convex domain is still a
vertical graph. This generalizes a well-known result due to R. Krust. Focus-
ing the case when the first factor is the hyperbolic plane, it is known that
in certain class of surfaces, two minimal isometric immersions are associate.
We show that this is not true in general. In the product ambient space, when
the first factor is either the hyperbolic plane or the two-sphere, we prove that
the conformal metric and the Hopf quadratic differential determine a simply
connected minimal conformal immersion, up to an isometry of the ambient
space. For these two product spaces, we derive the existence of the minimal
associate family.

1. Introduction

A beautiful phenomenon for minimal surfaces in Euclidean space is the ex-
istence of a 1-parameter family of minimal isometric surfaces connecting the
catenoid and the helicoid, which are said to be associate. Also, it is a well-
known fact that any two conformal isometric minimal surfaces in a space form
are associate. What happens in other 3-dimensional manifolds ?

Our objective of this paper is to discuss the same phenomenon in the product
space, M × R, establishing a definition of associate minimal immersions. We

specialize in the situations when M = H2, the hyperbolic plane, and M = S2,
the sphere, where surprising facts occur. We will prove some existence and
uniqueness results explained below. We begin with relevant definitions.

Let M be a two dimensional Riemannian manifold. Let (x, y, t) be local

coordinates in M × R, where z = x + iy are conformal coordinates on M and

t ∈ R. Let σ2|dz|2 be the metric on M, so that ds2 = σ2|dz|2 + dt2 is the metric

on the product space M× R. Let Ω ⊂ C be a simply connected domain of the

plane, w = u + iv ∈ Ω. We recall that if X : Ω → M × R, w 7→ (h(w), f(w)),
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w ∈ Ω, is a conformal minimal immersion, then h : Ω → (M, σ2|dz|2) is a

harmonic map. We recall also that for any harmonic map h : Ω ⊂ C →
M there exists a related Hopf holomorphic quadratic differential Q(h). Two

conformal immersions X = (h, f) and X∗ = (h∗, f ∗) : Ω → M × R are said to

be associate if they are isometric and if the Hopf quadratic differentials satisfy

the relation Q(h∗) = e2iθQ(h) for a real number θ. If Q(h∗) = −Q(h), then the

two immersions are said to be conjugate. Observe that if M = R2, then, locally,
any conformal and minimal immersion has an associated family, see Remark 17.

In this paper, we will show that there exist two conformal minimal immersions

X, Y : D → H2 × R which are isometric each other, with constant Gaussian

curvature K ≡ −1, but are not associate (see Example 18), where D is the unit

disk. We will prove also that the vertical cylinder over a planar geodesic in

H2 × R is the only minimal surface with constant Gaussian curvature K ≡ 0

(Corollary 5).

One of our principal results is a uniqueness theorem in H2 × R or S2 × R,
showing that the conformal metric and the Hopf quadratic differential determine
a minimal conformal immersion, up to an isometry of the ambient space, see
Theorem 6. We will derive the existence of the minimal associate family in

H2×R and S2×R, in Corollary 10, by establishing an existence result (Theorem

7). The associate minimal family in H2 × R or S2 × R is derived by another

approach in [4].

The first author has constructed examples of minimal surfaces in H2×R and

in S2 × R, which generalize the family of Riemann’s minimal examples of R3.
He classified and constructed all examples foliated by horizontal constant cur-
vature curves. Some of them have Gaussian curvature K ≡ −1. This family is

parametrized by two parameter (c, d) and the example corresponding to (c, d) is

conjugate to the one parametrized by (d, c) ([8]). The second and third authors

proved that any two minimal isometric screw motion immersions in H2×R and

S2 × R are associate, see [15]. The second author proved that any two min-

imal isometric parabolic screw motion immersions into H2 × R are associate.
On the other hand, he proved that there exist families of associate hyperbolic
screw motion immersions, but there exist also isometric non-associate hyper-

bolic screw motion immersions, see [14]. There exist hyperbolic screw motion

surfaces associate to parabolic screw motion surfaces (Example 16).

Several questions arise: We point out the problem of the existence of the
associate minimal family in M×R, for any 2-dimensional Riemannian manifold
M. Also, we may ask in which general assumptions isometric immersions must
be associate.
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The second principal result is a generalization of Krust’s theorem (see

[5, Volume I, page 118] and applications therein) which states that an associate

surface of a minimal vertical graph in R3 on a convex domain is a vertical graph.

This theorem is true in M × R when KM ≤ 0 (Theorem 14), where KM is the

Gaussian curvature of M.
For related works on minimal surfaces in M× R, see for instance Daniel [4],

Nelli and Rosenberg [12], Meeks and Rosenberg [11] and Rosenberg [13].

For related works on harmonic maps between surfaces the reader can see, for

instance, Han [7], Schoen and Yau [16], Tam and Wan [17] and Wan [18].

We are grateful to the referee for valuable observations.

2. Preliminarias

We consider X : Ω ⊂ R2 →M×R a minimal surface conformally immersed in
a product space, where M is a complete Riemannian two-manifold with metric

µ = σ2(z)|dz|2 and Gaussian curvature KM. First we fix some notation. Let

us denote |v|σ = σ|v|, 〈v1, v2〉σ = σ2〈v1, v2〉, where |v| and 〈v1, v2〉 stand for the

standard norm and inner product in R2, respectively. Let us find w = u + iv as

conformal parameters of Ω, i.e., ds2
X = λ2|dw|2. We denote by X = (h, f) the

immersion, where h(w) ∈M and f(w) ∈ R.

Assume that M is isometrically embedded in Rk. By definition (see Lawson

[10]) the mean curvature vector in Rk is given by

2
−→
H = (4X)TXM×R = ((4h)ThM,4f),

where h = (h1, ..., hk). Since X is minimal, h : Ω −→M is a harmonic map from

Ω to the complete Riemannian manifold M, and f is a real harmonic function.

If (U, σ2(z)|dz|2) is a local parametrization of M, the harmonic map equation

in the complex coordinate z = x + iy of M (see [16, page 8]) is written as

(1) hww̄ + 2(log σ ◦ h)zhwhw̄ = 0.

In the theory of harmonic map there are two important classical objects to
investigate. One is the holomorphic Hopf quadratic differential associate to h:

(2) Q(h) = (σ ◦ h)2hwhw(dw)2 := φ(w)dw2.

The other is the complex coefficient of dilatation (see Ahlfors [2]) of a quasicon-

formal map:

a(w) =
hw̄

hw

·
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Since we consider a conformal immersion, we have (fw)2 = −φ(w) from (see

[15]):

|hu|2σ + (fu)
2 = |hv|2σ + (fv)

2,

〈hu, hv〉σ + fu · fv = 0.

We define η as the holomorphic one-form η = ±2i
√

φ(w)dw, when φ has only

even zeros. The sign is chosen so that we have

(3) f = Re

∫

w

η.

Assume that X is a conformal immersion and let N be the Gauss map in

M × R. Then, setting N = N1∂/∂x + N2∂/∂y + N3∂/∂t, where x + iy are

isothermic coordinates of M and t is a coordinate of R, we have (see [15]):

(4) N := (N1, N2, N3) =
((2/σ)Reg, (2/σ)Img, |g|2 − 1)

|g|2 + 1
,

where

(5) g :=
fwhw − fwhw

σ|hw|(|hw|+ |hw|) .

We remark that

(6) g2 = −hw

hw̄

= −1

a
.

Using Equations (2), (3) and (6), we can express the differential dh as follows:

(7) dh = hw̄dw̄ + hwdw =
1

2σ
g−1η − 1

2σ
gη.

The induced metric ds2
X = λ2|dw|2 is given by [15]:

(8) ds2
X = (|hw|σ + |hw̄|σ)2|dw|2.

Thus, combining these equations together, we derive the metric in terms of g
and η:

(9) ds2
X =

1

4
(|g|−1 + |g|)2|η|2 = (|√a|+ |√a|−1)2|φ||dw|2.

In the case of minimal surfaces X conformally immersed in R3 = R2×R, the

data (g, η) are classical Weierstrass data:
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(10) X(w) = (h, f) =

(
1

2

∫

w

g−1η − 1

2

∫

w

gη, Re

∫

w

η

)
.

In particular g is the Gauss map.
The main difference is in the fact that g is no more a meromorphic map

when the ambient space is M × R. In order to study g, it is more convenient
occasionally to consider the complex function ω + iψ defined by

(11) g := −ieω+iψ,

where ω and ψ are R-valued functions. It is a well-known fact (see [16, page 9])

that harmonic mappings satisfy the Bochner formula:

(12) 40 log
|hw|
|hw̄| = −2KMJ(h),

where J(h) = σ2
(|hw|2 − |hw̄|2

)
is the Jacobian of h with |hw|2 = hwhw and 40

denotes the laplacian in the Euclidean metric. Hence, taking into account of

(2), (6), (11) and (12), we have

(13) 40ω = −2KM sinh(2ω)|φ|.
With these conventions, notice that the metric and the third coordinate of the
Gauss map N are given respectively by

(14) ds2
X = 4 cosh2 ω|φ||dw|2 and N3 = tanh ω.

On account of the discussion above, we deduce the following

Proposition 1. Let h : Ω →M be a harmonic mapping from a simply connected

domain Ω ⊂ C such that the holomorphic quadratic differential Q(h) does not

vanish or has zeros with even order. Then there exists a complex map g =

−ieω+iψ and a holomorphic one-form η = ±2i
√

Q(h) such that, setting f =

Re
∫

η, the map X := (h, f) : Ω →M×R is a conformal and minimal (possibly

branched ) immersion. The third component of the unit normal vector is given

by N3 = tanh ω. The metric of the immersion is given by (8) or (9):

ds2
X = cosh2 ω|η|2,

where ω is a solution of the sinh-Gordon equation

40ω = −2KM sinh(2ω)|φ|.



6 LAURENT HAUSWIRTH, RICARDO SA EARP AND ERIC TOUBIANA

Remark 2. We remark that the branch points of X are among the zeros of

Q(h). Therefore, the branch points are isolated. Note also that the poles of ω

are among the zeros of Q(h).

Proof of Proposition 1.

We deduce from the hypothesis that we can solve in f the equation (fw)2 =

−(σ ◦ h)2hwhw, (since Ω is simply connected). Therefore the real function f is

harmonic and the map X := (h, f) : Ω → M × R is a conformal and minimal

(possibly branched) immersion.

Observe that X∗ := (h,−f) also defines a conformal and minimal (possibly

branched) immersion into M × R, which is isometric to X with g∗ = −g and

η∗ = −η. ¤

Remark 3. Denote the quadratic differential of Abresh and Rosenberg [1] by

QA−R and keep the notation in Proposition 1. Then, using the relation (fw)2 =

−(σ ◦ h)2hwhw, a straightforward computation shows that we have QA−R =

−2Q(h).

Lemma 4. Let X = (h, f) : Ω → M × R be a conformal immersion. Let

N = (N1, N2, N3) be the Gauss map of X. Let K (resp. Kext) be the intrinsic

(resp. extrinsic) curvature of X. Denote by KM the Gaussian curvature of M.

Then the Gauss equation of X reads as

(Gauss Equation) K(w)−Kext(X(w)) = KM(h(w))N2
3 (w)

for each w ∈ Ω.

Proof.
As usual, z = x + iy are local conformal coordinates of M and t is the

coordinate on R. We denote by R the curvature tensor of M× R, that is,

R(A, B)C = ∇A∇BC −∇B∇AC −∇[A,B]C

for any vector fields A,B,C on M×R, where ∇ is the Riemannian connection
on M× R.

As X is a conformal immersion, the induced metric on Ω has the form ds2
X =

λ2(w)|dw2| with λ = (σ ◦ h)(|hw|+ |hw|). The Gauss equation is given by

K(w)−Kext(X(w)) =
〈R(Xu, Xv)Xv ; Xu〉

λ4
(w),

where 〈 ; 〉 is the scalar product on M × R, Xu = ∂X/∂u = (Reh)u∂x +

(Imh)u∂y + fu∂t and so on. A tedious but straightforward computation shows
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that

R(∂x, ∂y)∂x = + ∆0 log(σ)∂y,

R(∂x, ∂y)∂y = −∆0 log(σ)∂x,

R(∂x, ∂x)∂∗ = R(∂y, ∂y)∂∗ = 0,

R(∂t, ∂∗)∂∗ = R(∂∗, ∂t)∂∗ = R(∂∗, ∂∗)∂t = 0,

where ∂∗ stands for any vector field among ∂x, ∂y or ∂t, and ∆0 is the Euclidean

Laplacian. We deduce that

〈R(Xu, Xv)Xv; Xu〉 = −σ2∆0 log(σ)(|hw|2 − |hw|2)2.

Let us observe that KM = −∆0 log(σ)/σ2, so that we deduce from Equations

(4) and (6) that N3 = (|hw| − |hw|)/(|hw|+ |hw|). Now, using the expression of

λ, we obtain the result. ¤
Notice that given a geodesic Γ ⊂ H2 × {0}, the vertical cylinder C over Γ

defined by C := {(x, y, t) ; x + iy ∈ Γ, t ∈ R} ⊂ H2 × R is a minimal surface

with Gaussian curvature K ≡ 0. We now deduce the following.

Corollary 5. let X = (h, f) : Ω → H2 × R be a conformal and minimal

immersion. Let w ∈ Ω be such that K(w) = 0, where K stands for the Gaussian

curvature of X (that is, the intrinsic curvature).

Then the tangent plane of X(Ω) at X(w) is vertical. Therefore, if K ≡ 0,

then X(Ω) is part of a vertical cylinder over a planar geodesic plane of H2×R,

that is, there exists a geodesic Γ of H2 × {t} such that X(Ω) ⊂ Γ× R.

Proof.
As M = H2, we have KM ≡ −1. Using the Gauss equation in Lemma 4, we

deduce that if K(w) = 0 at some point w ∈ Ω, then

(∗) Kext(X(w)) = N2
3 (w).

Recall that the extrinsic curvature Kext is the ratio between the determinants of
the second and the first fundamental forms of X. Therefore, as X is a minimal

immersion, we have Kext(X(w)) ≤ 0 at any point w. Using (∗), we obtain that

N2
3 (w) = 0, that is, the tangent plane is vertical at X(w).

Furthermore, if K ≡ 0, we deduce that at each point the tangent plane is

vertical. Using this fact we get that at any point X(w) the intersection of X(Ω)

with the vertical plane at X(w) spanned by N(w) and ∂t is part of a vertical

straight line. We deduce that there exists a planar curve Γ ⊂ H2 × {0} such

that X(Ω) ⊂ Γ × R. Again, as X is minimal, we obtain that the curvature of

Γ always vanishes, that is, Γ is a geodesic of H2. ¤
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2.1. Harmonic maps and CMC surfaces in Minkowski space.

We now make some comments about an existence theorem of spacelike CMC
surfaces in Minkowski 3-space and their relation with harmonic maps, inferred

by Akutagawa and Nishikawa [3].

We denote by R2,1 the Minkowski 3-space, that is, R3 equipped with the

Lorentzian metric ν = dx2
1 + dx2

2 − dx2
3, where (x1, x2, x3) are the coordinates

in R3. We consider the hyperboloid H in R2,1 defined by

H = {(x1, x2, x3) ∈ R2,1; x2
1 + x2

2 − x2
3 = −1}.

Since H has two connected components, we call H+ the component for which
x3 ≥ 1, and H− the other component. It is well-known that the restriction of ν

to H+ is a regular metric ν+ and that (H+, ν+) is isometric to the hyperbolic

plane H2. We define in the same way the metric ν− on H− and (H−, ν−) is

also isometric to the hyperbolic plane H2. Throughout this paper, we always

choose as model for H2 the unit disk D equipped with the metric σ2|dz|2 =

(4/(1− |z|2)2)|dz|2. The isometries Π+ : H+ → D and Π− : H− → D are given

by

Π+(x1, x2, x3) =
x1 + ix2

1 + x3

for any (x1, x2, x3) ∈ H+,

Π−(x1, x2, x3) =
x1 + ix2

1− x3

forany (x1, x2, x3) ∈ H−.

Indeed, Π+ (resp. Π−) is the stereographic projection from the south pole

(0, 0,−1) ∈ H− (resp. from the north pole (0, 0, 1) ∈ H+). Observe that in [3],

keeping their notation, ψ2 is the conjugate of the stereographic projection from

the south pole, that is, ψ2 = Π+.
Let Ω ⊂ C be a connected and simply connected open subset with w = u+ iv

as the coordinates on Ω. An immersion X : Ω → R2,1 is said to be a spacelike
immersion if for every point p ∈ Ω the restriction of ν at the tangent space

TpX(Ω) is a positive definite metric. In this paper we only consider spacelike

immersions. Since we are concerned with CMC spacelike surfaces in Minkowski
3-space, observe that, up to a dilatation, we can consider only spacelike mean
curvature 1 surfaces.

Let X : Ω → R2,1 be a spacelike immersion. For each p ∈ Ω there is a unique

vector N(p) ∈ H such that (Xu, Xv, N)(p) is a positively oriented basis and

N(p) is orthogonal to Xu(p) and Xv(p). This defines a map N : Ω → H called

the Gauss map.
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Let h : Ω → H2 be a harmonic map, that is, h satisfies (1):

hww +
2h

1− |h|2hwhw = 0.

We assume that neither h nor h is holomorphic. It is shown in [3, Theorem 6.1],

that given such h there exists an (possibly branched) immersion X+ : Ω → R2,1

such that the Gauss map is N+ = Π−1
+ ◦ h. Furthermore, the mean curvature is

constant and equals to 1, and the induced metric on Ω is

ν+ =
4|hw|2

(1− |h|2)2
|dw|2.

We remark the correspondence between our notation and the notation of [3]:

N+ = G and h = Ψ2. The map X+ is unique up to a translation. In the same

way there exists a unique, up to a translation, (possibly branched) immersion

X− : Ω → R2,1 such that the Gauss map is N− = Π−1
− ◦ h. Furthermore, the

mean curvature is constant and equals to 1 and the induced metric on Ω is

ν− =
4|hw|2

(1− |h|2)2
|dw|2,

with N− = G and h = Ψ1. Let us note that these two (branched) immersions

are not isometric and that the Gauss map of X+ (resp. X−) takes values in H+

(resp. H−). In this paper we are only concerned with the immersion X+.

3. Minimal immersions in M× R
Next, we suppose that M = R2,H2 or S2. In the case where M = R2,

we have σ(z) ≡ 1. If M = H2, we consider the unit disk model D, and then

σ(z) = 2/(1−|z|2) for every z ∈ D. Finally, ifM = S2, we can choose coordinate

charts R2, given by the stereographic projections with respect to the north pole

and the south pole, and in both cases we have σ(z) = 2/(1 + |z|2) for every

z ∈ R2.

Theorem 6. Let Ω ⊂ C be a simply connected open set and consider two
conformal minimal immersions X, X∗ : Ω → M × R which are isometric each

other. Let us call h (resp. h∗ ) the horizontal component of X (resp. X∗ ).
Assume that h and h∗ share the same Hopf quadratic differential. Then X and
X∗ are congruent.

Proof.
We set X = (h, f), where h : Ω → M is the horizontal component and

f : Ω → R is the vertical component. Similarly, let us set X∗ = (h∗, f ∗). We
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use the map g = −ieω+iψ (resp. g∗ = −ieω∗+iψ∗) associated to h (resp. h∗)
defined in (11) and the one-form η (resp. η∗) defined in (3). As X and X∗ are

mutually isometric, we infer from (9) that

1

4
(|g|+ |g|−1)2|η| = 1

4
(|g∗|+ |g∗|−1)2|η∗|.

Also, as h and h∗ share the same Hopf quadratic differential Q = φdw2, we have

|η| = 2|φ|1/2 = |η∗|.
We deduce that

(∗) |g| = |g∗|,
or

(∗∗). |g| = |g∗|−1,

If the case (∗∗) happens, we consider the new immersion X∗∗ : Ω → M × R
defined by X∗∗ = (h∗, f ∗). Now, the case (∗) happens, since the immersion X∗∗

has data g∗∗ = −(g∗)−1 by (5) and η∗∗ = η∗ by (3). Note that X∗∗ and X

are immersions isometric each other with the same Hopf quadratic differential.

Therefore, up to an isometry ofM×R, we can assume that the case (∗) happens

and then ω = ω∗.

Let us assume now that M = H2. The case M = S2 is similar, and the case

M = R2 (which is easy to show by Weierstrass representation) will be considered

later.
Let us consider the Minkowski 3-space R2,1. As h : Ω → H2 is a harmonic

map and Ω is simply connected, it is known that there exists a CMC 1 (pos-

sibly branched) immersion X̃ : Ω → R2,1 such that the Gauss map is Π−1
+ ◦ h.

Furthermore, the induced metric on Ω is given by

ds2eX = ((σ ◦ h)|hw|)2 |dw|2 = e2ω|φ||dw|2,
see Subsection 2.1. Notice that φ can vanish only at isolated points, so there

exists a simply connected open subset V of Ω such that X̃ defines a regular

immersion from V into R2,1 and ds2eX defines a regular metric.

Furthermore, we deduce from Theorem 3.4 of [3] that the second fundamental

form of X̃ is given uniquely in term of Q and ds2eX . To see this, observe first

that, setting φ̃(X̃) := (1/2)(buu − bvv − i2buv), where buu, bvv and buv are the

coefficients of the second fundamental form, we get from the relation (3.12) of

[3] that

(15) φ̃(X̃) = (σ ◦ h)2hwhw = φ,
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that is, φ̃(X̃)dw2 = Q. Pay attention to the fact that our convention is not

the same as that in [3]. More precisely, considering the notation h11, h12, h22

and Ψ2 of [3], we have Ψ2 = h, buu = ((σ ◦ h)|hw|)2 h11 and so on. Therefore,

φ̃(X̃) = (1/2) ((σ ◦ h)|hw|)2 (h11 − h22 − i2h12).

Now, using the fact that buu + bvv = 2 ((σ ◦ h)|hw|)2 (because the mean cur-

vature is 1), we deduce that

buu(X̃) = ((σ ◦ h)|hw|)2 + Re Q/dw2 = e2ω|φ|+ Reφ,(16)

bvv(X̃) = ((σ ◦ h)|hw|)2 − Re Q/dw2 = e2ω|φ| − Reφ,(17)

buv(X̃) = −Im Q/dw2 = −Imφ.(18)

In the same way, there exists a unique (up to a translation) CMC 1 (possibly

branched) immersion X̃∗ : Ω → R2,1 such that the Gauss map is Π−1
+ ◦ h∗.

We can assume that X̃∗ defines a regular immersion on V . Notice that we

have Q(h∗) = Q and the identity (∗) as well. We deduce from the previous

discussion that X̃ and X̃∗ share the same induced metric on V and the same
second fundamental form. Therefore, we infer from the fundamental theorem of

surface theory in Minkowski 3-space that X̃ and X̃∗ are equal up to a positive

isometry Γ in R2,1, that is, X̃∗ = Γ ◦ X̃. The restriction of Γ on H2 defines an

isometry γ of H2, and we get h∗ = γ ◦ h on V . By an argument of analyticity
we have h∗ = γ ◦ h on the entire Ω.

Let us return to H2×R. As f ∗w = ±fw in view of (3) we get that f ∗ = ±f +c,

where c is a real constant. Hence we obtain X∗ := (h∗, f ∗) = (γ ◦ h,±f + c),

that is, X∗ and X differ from an isometry of H2 × R.

In the case where M = S2, the proof is similar: We use the fact that any

harmonic map from Ω into S2 is the Gauss map of a unique (up to a translation)

CMC 1 (possibly branched) immersion into R3, see [9].

Finally, let us consider the case where M = R2. Let (g, η) (resp. (g∗, η∗))
be the Weierstrass representation of X (resp. X∗). Therefore X is given by

X =
(
(1/2)

∫
g−1η − (1/2)

∫
gη, Re

∫
η
)
. As |g∗| = |g|, we deduce that there

exists a real number θ such that g∗ = eiθg. Furthermore, we have η = ±η∗,
since (fz)

2 = (f ∗z )2 = −φ. In consequence, we have (g∗, η∗) = (eiθg,±η) and we

deduce that X∗ differs from X by an isometry of R2 × R. ¤

There is also an existence result of minimal immersions into M × R, where

M = H2,S2 or R2.



12 LAURENT HAUSWIRTH, RICARDO SA EARP AND ERIC TOUBIANA

Theorem 7. Let Ω ⊂ C be a simply connected domain. Let ds2 = λ2(w)|dw|2 be

a conformal metric on Ω and Q = φ(w)dw2 a holomorphic quadratic differential

on Ω with zeros (if any) of even order. Assume that M = H2,S2 or R2.

Then there exists a conformal and minimal immersion X : Ω →M×R such

that, setting X := (h, f), the Hopf quadratic differential of h is Q (that is,

Q(h) = φ(w)dw2 ) and such that the induced metric ds2
X is

ds2
X = ds2 = λ2(w)|dw|2

if and only if λ satisfies λ2 − 4|φ| ≥ 0 and

(19) ∆0ω = −2KM sinh 2ω|φ|
in which φ 6= 0, where KM is the (constant) Gaussian curvature of M, ∆0 is the

Euclidean Laplacian and

ω := log
λ +

√
λ2 − 4|φ|
2

− 1

2
log |φ|.

Proof.
Observe that each zero of φ corresponds to a pole of ω and that e2ω|φ||dw|2

is positive definite on the whole Ω. We first consider the case where KM = −1,

that is, M = H2. Let us assume that λ satisfies (19). Consider the symmetric

2-tensor II := buudu2 +2buvdudv + bvvdv2 on Ω, where buu, buv and bvv are given
by

(20)





buu + bvv = 2e2ω|φ|,
buu − bvv = 2Re(φ),

buv = − Im(φ).

The Gauss equation for the pair (e2ω|φ||dw|2, II) in R2,1 is written as

∆0ω = 2 sinh(2ω)|φ|,
which is satisfied by our assumption. The Codazzi-Mainardi equations are also
satisfied, since φ is holomorphic. Therefore the fundamental theorem of surface

theory in R2,1 assures that there exists an immersion X̃ : Ω → R2,1 such that the

induced metric on Ω is ds2eX = e2ω|φ||dw|2 and the second fundamental form is

II. Now Equations (20) show that the immersion has constant mean curvature
1.

Up to an isometry of R2,1 we can assume that the Gauss map N of X̃ takes

values in H+. Therefore, h := Π+ ◦ N : Ω → H2 is a harmonic mapping such

that its Hopf quadratic differential is the same as X̃ so that Q(h) = φ̃(X̃)dw2,
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as we have seen in the proof of Theorem 6, see the relation (15). Equations (20)

show that

Q =
1

2
(buu − bvv − i2buv)dw2 := Q̃(X̃).

That is, Q is the classical Hopf quadratic differential of CMC surfaces in R2,1.

Therefore, we obtain Q(h) = Q. Moreover, we have

ds2eX = ((σ ◦ h)|hw|)2 |dw|2,

deducing that e2ω|φ| = ((σ ◦ h)|hw|)2.

Now, we apply Proposition 1 which states that there exists a conformal and

minimal immersion X = (h, f) : Ω → H2 × R, with the induced metric

ds2
X = (σ2 ◦ h)(|hw|+ |hw|)2|dw|2.

Finally, using the fact that (σ ◦h)|hw| = |φ|/(σ ◦h)|hw|, we easily compute that

(σ2 ◦ h)(|hw|+ |hw|)2 = 4 cosh2 ω|φ||dw|2 = λ2,

that is, ds2
X = λ2|dw|2 as desired.

Conversely, suppose that such an immersion exists. Then, by (14), we have

λ2 = 4 cosh2 ω|φ|.
A simple computation shows that we have

ω = ω1 :=
1

2
log

|hw|
|hw| or ω = −ω1 =

1

2
log

|hw|
|hw|

.

Note that Equation (19) is the Bochner formula (12). This completes the

proof in the case where M = H2.

If M = S2 (and then KM = 1), the proof is analogous: We use the fact that

for any constant mean curvature 1 immersion X̃ : Ω → R3, its Gauss map

N : Ω → S2 is harmonic, and conversely any harmonic map from Ω into S2

is the Gauss map of an (possibly branched) immersion into R3 with constant

mean curvature 1 [9].

If KM = 0, that is, M = R2, assume first that ω satisfies (19), that is, ω is a

harmonic function. As Ω is simply connected, ω is the real part of a holomorphic

function ψ on Ω: ω = Re(ψ). We set

η := −2i
√

φdw and g := eψ.

Let X = (h, f) : Ω → R2 × R be the conformal and minimal immersion given

by the Weierstrass representation (g, η), see (10). It is straightforward to verify
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that we have hwdw = −(1/2)gη and hwdw = (1/2)g−1η. Hence we obtain

Q(h) := hwhwdw2 = −1

4
η2 = Q,

and the induced metric is given by

ds2
X :=

1

4
(|g−1|+ |g|)2|η|2 = λ2(w)|dw|2.

Conversely, assume that such a minimal immersion X = (h, f) : Ω → R2×R
exists. Let us denote by (g, η) its Weierstrass representation. Since |φdw| =

|η|2, we easily verify that λ2 − |φ| ≥ 0. Moreover, we compute that we have

|g| = (λ−
√

λ2 − 4|φ|/2
√
|φ|) or |g| = (λ +

√
λ2 − 4|φ|/2

√
|φ|). In both cases,

ω is a harmonic function and then satisfies (19). ¤

Observe that in the case where KM = 0 the result can be found in [6, Section

10.2]. We gave the proof for the sake of completeness. The cases where KM = 1

and KM = −1 were proved by Daniel [4], using different methods.

Definition 8. Let M be a Riemann surface. Let X, X∗ : Ω → M × R be

two conformal minimal immersions, and set X = (h, f) and X = (h∗, f ∗). For

any θ ∈ R we say that X and X∗ are θ-associate (or simply associate) if they

are isometric each other and if their Hopf quadratic differentials are related by

Q(h∗) = e2iθQ(h). Namely, X and X∗ are associate if and only if we have

(σ◦h)(|hw|+|hw|) = (σ◦h∗)(|h∗w|+|h∗w|) and (σ◦h∗)2h∗wh∗w = e2iθ(σ◦h)2hwhw,

where, in a local coordinate z, the metric on M is given by σ2(z)|dz|2.
In the case where M = R2,H2 or S2, we deduce from Theorem 6 that given a

conformal minimal immersion X, the θ-associate minimal immersion is uniquely

determined up to an isometry of M× R. Furthermore, if θ = π/2, we say that

X and X∗ are conjugate.

Remark 9. Two isometric immersions X and Xθ are associate up to an isom-

etry if ηθ = eiθη and by (9) |gθ|+ |gθ|−1 = |g|+ |g|−1 (or equivalently, cosh ωθ =

cosh ω). Then ωθ = ω or ωθ = −ω. In particular, X and Xθ are associate if and

only if N3(X) = N3(X
∗) or N3(X) = −N3(X

∗) (recall that N3(X) = tanh ω)

and ηθ = eiθη.

In fact, Daniel [4] proved that the associate family always exists in H2 × R
and S2 × R. In this situation, he gave an alternative definition of associate
and conjugate isometric immersions, which turns out to be equivalent to our
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definition. We are going to give another proof of the existence of the associate
family.

Corollary 10. Let X := (h, f) : Ω → M × R be any conformal and minimal

immersion, where M = H2, S2 or R2. Then, for any θ ∈ R, there exists a

θ-associate immersion Xθ := (hθ, fθ) : Ω →M× R. Furthermore, X0 = X and

Xθ is unique up to isometries of M× R.

Proof.
Set Q(h) = φ(w)dw2, and let ds2

X be the conformal metric induced on Ω by

X. We deduce from Theorem 7 that the pair (ds2
X , φ) satisfies Condition (19).

Therefore, for any θ ∈ R, the pair (ds2
X , e2iθφ) also satisfies Condition (19).

Finally, we infer with Theorem 7 that there exists a θ-associate immersion.
¤

4. Vertical minimal graph

In this section, we study geometric properties of minimal graphs and their
associate family. Recall from Introduction that we introduce some “Weierstrass”

data for minimal surfaces (g, η) with g = −ieω+iψ and η = −2i
√

φ. When X is

a minimal surface of R3, ω + iψ is meromorphic. In the other cases ω satisfies

the sinh-Gordon equation (13). In the following Lemma, we determine how the

function ω+iψ deviates from being meromorphic (since ω can have infinite value

at each zero of φ). We express the same expression for the associate family. In

this case (Remark 9), up to an isometry, we have gθ = −ieω+iψθ
and ηθ = eiθη

(ωθ = ω).

Lemma 11. Let h : Ω → (U, σ2|dz|2) be a harmonic map with holomorphic

Hopf quadratic differential Q = φ(w)(dw)2 with zeros (if any) of even order and

coefficient of dilatation a(z) = e−2(ω+iψ) = g−2. If we define
√

φ = |φ|1/2eiβ and

identify σ with σ ◦ h, then

(21) (ω + iψ)w̄ = |φ|1/2e−iβ

(
sinh ω〈∇ log σ

σ
, eiψ〉+ i cosh ω〈∇ log σ

σ
, ieiψ〉

)
.

Corollary 12. Let X = (h, f) be a minimal surface and Xθ = (hθ, ηθ) the

associate family of X defined in Definition 8. If we define the map ωθ + iψθ

and denote σθ = σ ◦ hθ, then we have ωθ = ω (up to an isometry) and

(ω + iψθ)w̄ = |φ|1/2e−i(β+θ)

(
sinh ω〈∇ log σθ

σθ
, eiψθ〉+ i cosh ω〈∇ log σθ

σθ
, ieiψθ〉

)
.



16 LAURENT HAUSWIRTH, RICARDO SA EARP AND ERIC TOUBIANA

Proof.
In complex coordinate w, using (7) and (11) and assuming η = −2i

√
φ, we

derive

hw =

√
φeω+iψ

σ
and hw̄ =

√
φe−ω+iψ

σ
,

while

hθ
w =

eiθ
√

φeω+iψθ

σθ
and hθ

w̄ =
e−iθ

√
φe−ω+iψθ

σθ
.

Inserting these expressions in the harmonic equation (1), we obtain

(ω + iψ)w̄ = −σ

(
1

σ ◦ h

)

w̄

− 2(log σ)zhw̄,

(ω + iψθ)w̄ = −σθ

(
1

σθ

)

w̄

− 2(log σθ)zhw̄.

Now note that

−σ

(
1

σ

)

w̄

= (log σ)w̄ = (log σ)zhw̄ + (log σ)z̄h̄w̄,

where 2(log σ)z = (log σ)x − i(log σ)y and h̄z̄ = hz. Collecting these equations,

we obtain

(ω + iψ)w̄ = (log σ)z̄h̄w̄ − (log σ)zhw̄,

which yields

(ω + iψ)w̄ =
|φ|1/2e−iβ

σ
(sinh ω (cos ψ(log σ)x + sin ψ(log σ)y)

+i cosh ω (cos ψ(log σ)y − sin ψ(log σ)x)) .

Since Xθ is isometric to X, as in the proof of Theorem 6, we can assume, up to

an isometry, that |g| = |gθ|, that is, ωθ = ω. Then the same equation applied

to hθ yields that

(ω + iψθ)w̄ = (log σθ)z̄h̄
θ
w̄ − (log σθ)zh

θ
w̄.

Therefore, we obtain

(ω + iψθ)w̄ =
|φ|1/2e−i(β+θ)

σθ

(
sinh ω

(
cos ψθ(log σθ)y + sin ψθ(log σθ)y

)

−i cosh ω
(
cos ψθ(log σθ)y − sin ψθ(log σθ)y

))
. ¤
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We consider the projection F : M × R −→ M × {0}, thus F ◦X = h. Now,

let us consider a curve γ : [0, l] −→ Ω ⊂ C parametrized by arclength such that

γ′(t) = eiα(t) in Ω ⊂ C. We will compute in the following the curvatures in

M of the planar curves F ◦ X(γ) = h(γ) and F ◦ Xθ(γ) = hθ(γ). Analogous

computation appears in [8] in the particular case where α = 0 and α = π/2.

Proposition 13. Let γ be a curve in Ω and consider the images h(γ) and hθ(γ)

in M. Then the curvatures of h(γ) and hθ(γ) are given respectively by

k(h(γ)) =
sin αωu − cos αωv + Gt

2|φ|1/2R
,(22)

k(hθ(γ)) =
sin αωu − cos αωv + Gθ

t

2|φ|1/2Rθ
,(23)

where

ReiG = cos(α + β) cosh ω + i sin(α + β) sinh ω,

RθeiGθ
= cos(α + β + θ) cosh ω + i sin(α + β + θ) sinh ω.

Proof.
We apply Formula (7) with g = −ieω+iψ and η = −2i

√
φdz for X, and

gθ = −ieω+iψθ
and ηθ = eiθη = −2ieiθ

√
φdz for Xθ. Recall that

√
φ = |φ|1/2eiβ.

Then we get

dh(γ)

dt
=

2|φ|1/2

σ
cosh(ω + iα + iβ)eiψ

=
2|φ|1/2

σ
(cos(α + β) cosh ω + i sin(α + β) sinh ω)eiψ,

dh(γ)

dt
=

2|φ|1/2

σ
Rei(ψ+G),

dhθ(γ)

dt
=

2|φ|1/2

σ
cosh(ω + iβ + iα + iθ)eiψθ

=
2|φ|1/2

σ
(cos(α + β + θ) cosh ω + i sin(α + β + θ) sinh ω)eiψθ

,

dhθ

dt
=

2|φ|1/2

σ
Rei(ψθ+Gθ).

If k is the curvature of a curve γ in (U, σ2(z)|dz|2) and ke is the Euclidean

curvature in (U, |dz|2), we get by a conformal change of the metric:
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k =
ke

σ
− 〈∇σ, n〉

σ2
,

where n is the Euclidean normal to the curve γ such that (γ′, n) is positively

oriented. If s denotes the arclength of h(γ) and sθ the arclength of hθ(γ), both

for the Euclidean metric, we have

(24) ke(h(γ)) = ψs + Gs =
σ

2|φ|1/2R
(cos αψu + sin αψv) + Gs.

The Euclidean normal of h(γ) (resp. hθ(γ)) is given by

n = (− sin(α + β) sinh ω + i cos(α + β) cosh ω)
eiψ

R
,

nθ = (− sin(α + β + θ) sinh ω + i cos(α + β + θ) cosh ω)
eiψθ

Rθ
,

and

〈∇σ, n〉
σ2

=
〈∇ log σ, n〉

σ
= − sin(α + β)

sinh ω

R
〈∇ log σ

σ
, eiψ〉

+ cos(α + β)
cosh ω

R
〈∇ log σ

σ
, ieiψ〉.

Using Lemma 11 and the expression of n, we obtain

〈∇σ, n〉
σ2

=
〈∇ log σ, n〉

σ
= − 1

2|φ|1/2R
(sin αωu − sin αψv − cos αωv − cos αψu).

Hence we deduce that

ψs

σ
− 〈∇σ, n〉

σ2
=

sin αωu − cos αωv

2|φ|1/2R
.

The same computation with Xθ yields that

ψθ
sθ

σθ
− 〈∇σθ, n〉

(σθ)2
=

sin αωu − cos αωv

2|φ|1/2Rθ
.

This completes the proof of the proposition, since Gs = (σ/(2|φ|1/2R))Gt. ¤

Now, we prove the generalization of Krust’s theorem for minimal vertical

graphs and associate family surfaces. Let U ⊂ M be an open set and f(z)

a smooth function on U. We say that F is a vertical graph in M × R if F =

{(z, t) ∈M× R ; t = f(z), z ∈ U}. The graph is an entire vertical graph if

U = M.
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Theorem 14. Let X(Ω) be a vertical minimal graph on a convex domain h(Ω)

in M. Then the associate surface Xθ(Ω) is a graph provided that KM ≤ 0.

When KM ≡ 0, this is a result of Krust (see [5, page 188] and application

therein).

Proof.
The proof is a direct application of the Gauss-Bonnet theorem with the fact

that ω has no zero (X is a vertical graph). If we consider a smooth piece of an

embedded curve Γ in M with end points p1 and p2, then if p1 = p2, Γ encloses
a region A and

(25)

∫

A

KMdVσ +

∫

Γ

k(s)ds + α = 2π,

where α is the exterior angle at p1 = p2, −π ≤ α ≤ π. The Gauss-Bonnet

formula (25) gives us, in the case where KM ≤ 0, that

π ≥ α ≥ 2π −
∫

Γ

kds.

Now, if we assume that Xθ(Ω) is not a graph, then there exist two points p1

and p2 of Ω with hθ(p1) = hθ(p2). Since h(Ω) is convex, there is a geodesic in

h(Ω) which can be lifted by a path γ in Ω. In summary, we assume that the

curve γ(t), t ∈ [0, l], is parametrized by Euclidean arclength, γ′(t) = eiα, h(γ) is

a piece of a geodesic ofM, p1 and p2 are the end points of γ and hθ(p1) = hθ(p2).

We assume that hθ(γ) is a closed embedded curve. If not, we can consider a

subarc of γ with end points p′1 and p′2, with the image by hθ smooth, embedded

and hθ(p′1) = hθ(p′2). In the case where this embedded subarc does not exist,

it follows that all points are double, like a path where we go and back after an

interior end point q. At q, hθ(γ) is not immersed, so that the derivative at q

is zero and then the tangent plane of Xθ is vertical. Then ω would have an

interior zero (a contradiction with the vertical graph assumption).

We will apply the Gauss-Bonnet formula to prove that
∫

hθ(γ)
kds∗ < π under

the hypothesis that h(γ) is a geodesic. It yields a contradiction with α ≤ π and

then the horizontal curve hθ(γ) is an embedded arc with hθ(p1) 6= hθ(p2).

Since h(γ) is a geodesic, using Formula (22) of Proposition 13, we have

sin αωu − cos αωv + Gt = 0. Thus we obtain

k(hθ(γ)) =
Gθ

t −Gt

2|φ|1/2Rθ
.
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Since ds∗ = 2|φ|1/2Rθdt, we have
∫

hθ(γ)

kds∗ = (Gθ(l)−G(l))− (Gθ(0)−G(0)).

Now, we remark by a direct computation of the real and imaginary parts of

Rθ

R
ei(Gθ−G) =

cos(α + β + θ) cosh ω + i sin(α + β + θ) sinh ω

cos(α + β) cosh ω + i sin(α + β) sinh ω

that

tan(Gθ(t)−G(t)) =
sinh(2ω) sin θ

2 cos θR2 − sin θ sin 2(α + β)
.

Since X is a graph, ω has no interior zero, so that sinh(2ω) sin θ cannot be

zero for θ ∈ (0, π/2]. This implies that modulo π we have Gθ(t)−G(t) ∈ (0, π)

modulo π. ¤
The Example (16) shows that the conjugate surface of an vertical minimal

entire graph in H2 × R (which is a graph by Theorem 14) is not necessarily an

entire graph. In this direction we obtain the following criterion in H2 × R.

Theorem 15. Let X : D2 −→ H2×R be an entire vertical graph on H2. Assume
that for any divergent path γ of finite Euclidean length in D we have

∫

γ

|φ|1/2dt < ∞.

Then the conjugate graph X∗ is an entire graph.

Proof.
Recall that f + if ∗ = −2i

∫ z √
φ is holomorphic. We consider a divergent

path γ(t) in D2 and its image X(γ) = Γ in the graph (recall that γ′(t) = eiα)).

Since X is a proper map, the length of Γ is infinite in X and

(26) `(Γ) =

∫

γ

2 cosh ω|φ|1/2dt = ∞.

Now, we show that the length of h∗ ◦ γ is infinite, which proves the theorem.

If X∗ is not entire, one can find a diverging curve in D2 with h∗ ◦ γ of finite
length. To this end, we compute

`(h∗ ◦ γ) =

∫

γ

2|φ|1/2R∗dt,

where R∗2 = sin2(α+β) cosh2 ω+cos2(α+β) sinh2 ω (recall R∗ = Rπ/2). Remark

that
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R∗2 = cosh2 ω − cos2(α + β).

Then, using (26) together with the hypothesis, we have

`(h∗ ◦ γ) ≥ `(Γ)−
∫

γ

| cos(α + β)||φ|1/2dt = ∞. ¤

5. Examples

Example 16. Let us consider the Figure 1, where the left side shows the Scherk

type surface in H2 × R invariant by hyperbolic translations. It is a complete

minimal graph over a unbounded domain in H2 defined by a complete geodesic

γ in H2 × {0}. In particular, it is not an entire graph. The graph takes values

±∞ on γ and value 0 on the asymptotic boundary. In the upper half-plane

model of H2 = {(x, y) ∈ R2 ; y > 0}, there is a nice formula for the graph in

H2 × R as

t = ln

(√
x2 + y2 + y

x

)
, y > 0, x > 0.

The right side of Figure 1 represents Scherk’s conjugate minimal surface in

H2 × R (see Theorem 4.2 of [14]) which is given by the equation t = x.

Figure 1

Scherk minimal surface invariant by hyperbolic translation and its conjugate

in H2 × R
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It is invariant by parabolic screw-motions. It is an entire graph over H2.

The second and third authors proved that in H2 × R, a catenoid is conjugate

to a helicoid of pitch ` < 1, see [15]. Surprisingly, a helicoid of pitch ` = 1

is conjugate to a surface invariant by parabolic translations, see [4] or [14].

Furthermore, any helicoid with pitch ` > 1 is conjugate to a minimal surface

invariant by hyperbolic translations, see [14].

Remark 17. Assume that M = R2, and consider X,X∗ : Ω → R2 × R two

conformal minimal immersions. Let (g, η) (resp. (g∗, η∗)) be the Weierstrass

representation of X (resp. X∗). We know that X and X∗ are associate in

the usual sense, that is, in the Euclidean space R3, if and only if g∗ = g and

η∗ = eiθη for a real number θ. Set X = (h, f) and X∗ = (h∗, f ∗). Since

Q(h) = −(η)2/4, we see that if X and X∗ are associate in the usual sense, then

there are associate in the meaning of Definition 8. Conversely, assume that X

and X∗ are associate in the sense of Definition 8. Then we have η∗ = ±eiθη and

|g∗| = |g| or |g∗| = 1/|g|. Therefore, there exists an isometry Γ of R3 such that

X and Γ ◦X∗ are associate in the usual sense.
For example, the Weierstrass representations (g, η) and (eiθg, eiθη) for θ 6=

2kπ, k ∈ Z, are associate in the sense of Definition 8, but are not in the usual
sense.

In consequence, in R2×R these two notions of associate minimal immersions

are equivalent only up to an isometry of R2 × R.

It is known that any two isometric conformal minimal immersions in R3 are

associate up to an isometry. Also, it is shown in [15] that any two isometric screw

motion minimal complete immersions in H2 × R are associate. The following

example shows that this is no longer true for isometric immersions in H2 × R.

Example 18. There is given in [15] an example of a complete minimal surface

in H2×R with intrinsic curvature constant and equals to −1, K ≡ −1. Namely,

from Formula (49) in Corollary 21 of [15], setting H = 0, l = m = 1 and d

is any positive real number (keeping the same notation), we obtain U(s) =√
1 + d2 cosh(s), s ∈ R. Consequently, from Theorem 19 in [15] we obtain (see

(36), (37) and (38))

ρ(s) = arcosh(
√

1 + d2 cosh s),

λ(ρ(s)) = d

∫
U(s)

U2(s)− 1
ds,

ϕ(s, τ) = τ − d

∫
1

U(s)(U2(s)− 1)
ds.
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Now, let us consider the map T : R2 → H2 × R defined for every (s, τ) ∈ R2

by

T (s, τ) = (tanh(ρ(s)/2) cos ϕ(s, τ), tanh(ρ(s)/2) sin ϕ(s, τ), λ(ρ(s)) + ϕ(s, τ)) ,

see Figure 2 (where d = 1).

Figure 2

Embedded minimal screw motion surface in H2 × R
with Gaussian curvature K ≡ −1

It is shown that T is a regular minimal embedding with induced metric

ds2
T = ds2 + U2(s)dτ 2 = ds2 + (1 + d2) cosh2(s)dτ 2.

A straightforward computation shows that the intrinsic curvature is given by

K = −U ′′/U . Therefore, we have K ≡ −1. By construction the surface T (R2) is

invariant by screw motions. The immersion T is not conformal, but, setting r :=∫
(1/U(s))ds, the new coordinates (r, τ) are conformal, that is, the immersion

T̃ (r, τ) := T (s, τ) is conformal. Thus, the surface T (R2) is isometric to the

hyperbolic plane (D, σ2(z)|dz|2). Therefore, there exists a conformal minimal

immersion X : D→ H2×R such that the induced metric on D is the hyperbolic

one and X(D) = T (R2). Clearly, the canonical immersion Y : D → H2 × R
defined by Y (z) = (z, 0) is isometric to X. According to Remark 9, we deduce

that X and Y are not associate, since the third component of the Gauss map
of X is never equal to ±1, as it is the case for Y .

It should be remarked that in [8] one can find other examples of complete

minimal surfaces in H2 × R with intrinsic curvature equal to −1.
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Remark 19. The second author has constructed in [14] new families of com-

plete minimal immersions in H2×R invariant by parabolic or hyperbolic screw

motions. It is shown (see Theorem 4.1) that any two minimal isometric para-

bolic screw motion immersions into H2 × R are associate. However, this is no
longer true for hyperbolic screw motion immersions. Indeed, there exist iso-

metric minimal hyperbolic screw motion immersions into H2×R which are not
associate, see Theorem 4.2.
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