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Abstract

We prove a vertical halfspace theorem for surfaces with constant mean cur-
vature H = 1

2 , properly immersed in the product space H2 × R, where H2 is the
hyperbolic plane and R is the set of real numbers. The proof is a geometric ap-
plication of the classical maximum principle for second order elliptic PDE, using
the family of non compact rotational H = 1

2 surfaces in H2 × R.

1 Introduction

D. Hoffman and W. Meeks proved a beautiful theorem on minimal surfaces, the so-
called “Halfspace Theorem” in [4]: there is no non planar, complete, minimal surface
properly immersed in a halfspace of R3. In this paper, we focus on complete surfaces
with constant mean curvature H = 1

2
in the product space H2 × R, where H2 is the

hyperbolic plane and R is the set of real numbers. In the context of H = 1
2

surfaces in
H2 × R, it is natural to investigate halfspace type results.
Before stating our result we would like to emphasize that, in last years there has been
work on constant mean curvature surfaces in homogeneous 3-manifolds, in particular in
the product space H2 ×R : new examples were produced and many theoretical results
as well.
A halfspace theorem for minimal surfaces in H2 × R is false, in fact there are many
vertically bounded complete minimal surfaces in H2 ×R [12]. On the contrary, we are
able to prove the following result for H = 1

2
surfaces in H2 × R.

Theorem 1. Let S be a simply connected rotational surface with constant mean curva-
ture H = 1

2
. Let Σ be a complete surface with constant mean curvature H = 1

2
, different

from a rotational simply connected one. Then, Σ cannot be properly immersed in the
mean convex side of S.

In [5], L. Hauswirth, H. Rosenberg and J. Spruck prove a halfspace type theorem for
H = 1

2
surfaces on one side of a horocylinder.
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The result in [5] is different in nature from our result because in [5], the “halfspace” is
one side of a horocylinder, while for us, the “halfspace” is the mean convex side of a
rotational simply connected surface.
The proof of our result is a geometric application of the classical maximum principle
to surfaces with mean curvature H = 1

2
in H2 × R.

Maximum Principle. Let S1 and S2 be two surfaces with constant mean curvature
H = 1

2
that are tangent at a point p ∈ int(S1)∩int(S2). Assume that the mean curvature

vectors of S1 and S2 at p coincide and that, around p, S1 lies on one side of S2. Then
S1 ≡ S2. When the intersection point p belongs to the boundary of the surfaces, the
result holds as well, provided further that the two boundary are tangent and both are
local graphs over a common neighborhood in TpS1 = TpS2.

The proof of the Maximum Principle is based on the fact that a constant mean cur-
vature surface in H2 × R locally satisfies a second order elliptic PDE (cf. [1] [3], [2],
[6] for the classical proof of the Maximum Principle is in Rn, the proof generalizes to
space forms and to H2 × R as well).
We notice that our surfaces are not compact, while the classical maximum principle
applies at a finite point. It will be clear in the proof of Theorem 1 that we are able
to reduce the analysis to finite tangent points, because of the geometry of rotational
surfaces of mean curvature H = 1

2
.

Our halfspace Theorem leads to the following conjecture (strong halfspace theorem).

Conjecture. Let Σ1, Σ2 be two complete properly embedded surfaces with constant
mean curvature H = 1

2
, different from the rotational simply connected surface S of

Theorem 1. Then Σi cannot lie in the mean convex side of Σj, i 6= j.

For H > 1√
2

the conjecture is true and it is known as the maximum principle at infinity

(cf. [8]).

2 Vertical Halfspace Theorem

We recall some properties of rotational surfaces of mean curvature H = 1
2

that will be
crucial in the proof of Theorem 1.
R. Sa Earp and E. Toubiana find explicit integral formulas for rotational surfaces of
constant mean curvature H ∈ (0, 1

2
] in [11]. A careful description of the geometry of

these surfaces is contained in Lemma 5.2 and Proposition 5.2 in the Appendix of [9].
For any α ∈ R+, there exists a rotational surfaceHα of constant mean curvature H = 1

2
.

For α 6= 1, the surface Hα has two vertical ends (where a vertical end is a topological
annulus, with no asymptotic point at finite height) that are vertical graphs over the
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Figure 1: H = 1
2

: the profile curve in the immersed and embedded case (R = tanh ρ/2).

exterior of a disk Dα (see Figure 1).
By vertical graph we mean the following: the vertical graph of a function u defined
on a subset Ω of H2 is {(x, y, t) ∈ Ω× R | t = u(x, y)} . When the graph has constant
mean curvature H, u satisfies the following second order elliptic PDE

divH

(∇Hu

Wu

)
= 2H (1)

where divH, ∇H are the hyperbolic divergence and gradient respectively and Wu =√
1 + |∇Hu|2H, being | · |H the norm in H2 × {0}.

Up to vertical translation, one can assume that Hα is symmetric with respect to the
horizontal plane t = 0.
For α = 1, the surface H1 has only one end, it is a graph over H2 and it is denoted by
S.
When α > 1 the surface Hα is not embedded (first picture in Figure 1). The self
intersection set is a horizontal circle on the plane t = 0. Denote by ρα the radius of the
intersection circle. For α < 1 the surface Hα is embedded (second picture in Figure 1).
For any α ∈ R+, let uα : H2×{0} \Dα −→ R be the function such that the end of the
surface Hα is the vertical graph of uα. The asymptotic behavior of uα has the following
form: uα(ρ) ' 1√

α
e

ρ
2 , ρ −→∞, where ρ is the hyperbolic distance from the origin. The

positive number 1√
α
∈ R+ is called the growth of the end.

The function uα is vertical along the boundary of Dα. Furthermore the radius rα is
always greater or equal to zero, it is zero if and only if α = 1 and tends to infinity as
α −→ 0 or α −→ ∞. As we pointed out before, the function u1 = 2 cosh

(
ρ
2

)
is entire

and its graph corresponds to the unique simply connected rotational example S.
Notice that, any end of an immersed rotational surface (α > 1) has growth smaller
than the growth of S, while any end of an embedded rotational surface (α < 1) has
growth greater than the growth of S. This means that the intersection between any
Hα and S is a compact set.
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Theorem 1 is called “vertical” because the end of the surface Σ is vertical, as it is
contained in the mean convex side of S.

Proof of Theorem 1. One can assume that the surface S is tangent to the slice
t = 0 at the origin and it is contained in {t ≥ 0}. Suppose, by contradiction, that
Σ is contained in the mean convex side of S. Lift vertically S. If there is an interior
contact point between Σ and the translation of S, one has a contradiction by the
maximum principle. As Σ is properly immersed, Σ is asymptotic at infinity to a
vertical translation of S. One can assume that the surface Σ is asymptotic to the S
tangent to the slice t = 0 at the origin and contained in {t ≥ 0}.
Let h be the height of one lowest point of Σ, i.e. h = min{t | (x, y, t) ∈ Σ}. Denote by
S(h) the vertical lifting of S of length h. One has one of the following facts.

• S(h) and Σ have a first finite contact point p : this means that S(h − ε) does
not meet Σ at a finite point, for ε > 0 and then S(h) and Σ are tangent at p
with mean curvature vector pointing in the same direction. In this case, by the
maximum principle S(h) and Σ should coincide. Contradiction.

• S(h) and Σ meet at a point p, but p is not a first contact point. Then, for ε small
enough, S(h− ε) intersects Σ transversally.

Denote by W the non compact subset of H2 × R above S and below S(h− ε).
It follows from the maximum principle that there are no compact components of Σ
contained in W. Denote by Σ1 a non compact connected component of Σ contained in
W. By definition of Σ1, the boundary ∂Σ1 is contained in ∂W \S = S(h− ε). Consider
the family of rotational non embedded surfaces Hα, α > 1. Translate eachHα vertically
in order to have the waist on the plane t = h − ε. By abuse of notation, we continue
to call the translation, Hα. Denote by H+

α , the part of the surface outside the vertical
cylinder of radius ρα. Notice that H+

α is embedded and it is a vertical graph. When
α −→∞, then ρα −→∞ as well. Furthermore the growth of the end of H+

α is smaller
than the growth of S. Hence when α is great enough, say α0, H+

α0
is outside the mean

convex side of S. Then, H+
α0

does not intersect Σ. Furthermore, when α −→ 1, H+
α

converge to S(h− ε). Now, start to decrease α from α0 to one. Before reaching α = 1,
the surface H+

α first meets S and then touches Σ1 tangentially at an interior finite
point, with Σ1 above H+

α . This depends on the following two facts.

• The boundary of Σ1 lies on S(h− ε) and the boundary of any of the H+
α lies on

the horizontal plane t = h− ε.

• The growth of any of the H+
α is strictly smaller than the growth of S. Thus the

end of H+
α is outside the mean convex side of S.

The existence of an such interior tangency point is a contradiction by the maximum
principle. ut
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Remark 1. Our result is sharp in the following sense. There are examples of complete,
H = 1

2
surfaces properly immersed in the non mean convex side of the simply connected

rotational surface S of Theorem 1. Consider any Hα with α > 1. As the growth of
Hα is less than the growth of S, Hα ∩ S is a compact set. Then, a suitable vertical
downward translation of Hα is contained in the non mean convex side S.

It is worth noticing that there are many examples of entire graphs of mean curvature
H = 1

2
with a non vertical end, i.e., with points of the asymptotic boundary at finite

height; see, for instance, [10]. A significant example is given by the following graph
(halfplane model for H2):

t =

√
x2 + y2

y
, y > 0

It has mean curvature H = 1
2
, and its asymptotic boundary contains two vertical half

straight lines (see [10, Equation (31), Figure (12)]).

Let us now discuss some consequences of Theorem 1.
First we need to recall the following notion. For a given circle C in H2 × {0}, denote
by Z the vertical cylinder over C, that is Z = {(x, y, t) | (x, y) ∈ C, t ∈ R}. An end E
is cylindrically bounded if there exists a vertical cylinder Z such that, up to a reflection
about the slice {t = 0}, E is contained in the mean convex side of Z ∩ {t ≥ 0}.

Corollary 1. Let Σ be a complete properly immersed surface with mean curvature
H = 1

2
with cylindrically bounded ends. Then Σ must have more than one end.

Proof. Assume by contradiction that Σ has only one cylindrically bounded end E.
Then there exists a vertical cylinder Z such that E lies in the mean convex side of
Z ∩ {t > 0}. In particular, one can choose the cylinder Z such that the whole surface
Σ is contained in Z ∩ {t > 0}. It is clear that Z ∩ {t > 0} is contained in the mean
convex side of a suitable vertical translation of the simply connected surface S. Hence
Σ is contained in the mean convex side of some vertical translation of S as well. Now
Theorem 1 yields Σ = S (in fact we only need the first part of the proof of Theorem
1), which is a contradiction, since S is not cylindrically bounded.

ut

As we remarked before, there many entire graphs of mean curvature H = 1
2
. The

following consequence of Theorem 1, gives some information about their geometry.
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Corollary 2. Let Σ be a entire graph of mean curvature H = 1
2
. If Σ is not rotational,

then it intersects the interior of the complement of the mean convex side of S.
ut
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