A MINIMAL STABLE VERTICAL PLANAR END IN H? x R
HAS FINITE TOTAL CURVATURE

RICARDO SA EARP AND ERIC TOUBIANA

ABSTRACT. We prove that a minimal oriented stable annular end in H? x R whose
asymptotic boundary is contained in two vertical lines has finite total curvature and
converges to a vertical plane. Furthermore, if the end is embedded then it is a
horizontal graph.

1. INTRODUCTION

Since the last decade there has been an increasing interest among geometers in studying
minimal surfaces in H? x R with a certain prescribed asymptotic boundary, where H?
stands for the hyperbolic plane.

In a joint work with B. Nelli [11], the authors characterized the catenoids in H? x R
among minimal surfaces with the same asymptotic boundary. Note that the catenoids
are the unique minimal surfaces of revolution in H? x R and each catenoid M has

infinite total curvature, that is [,, |K|dA = oo, where K is the Gaussian curvature of
M.

In this paper, we prove that a minimal oriented stable annular end in H? x R whose
asymptotic boundary is contained in two vertical lines has finite total curvature and
converges to a vertical plane (Theorem 2.1). Furthermore, if the end is embedded then
it is a horizontal graph with respect to a geodesic in H? x {0} (Definition 2.4).

We point out that in Euclidean space a famous result of D. Fisher-Colbrie [3] states
that a complete oriented minimal surface has finite index if and only if it has finite
total curvature. Observe that in H? x R, finite total curvature of a complete oriented
minimal surface implies finite index [1], but the converse does not hold: there are many
examples of oriented complete stable minimal surfaces with infinite total curvature.

Indeed, there are families of oriented complete stable minimal surfaces invariant by a
nontrivial group of screw motions [15]. A particular example is a connected, complete
and stable minimal surface whose asymptotic boundary is the union of an arc in 9., H? x
{0} with the two upper half vertical lines starting at the two boundary points {pu, ¢oo }
of the arc [17, Proposition 2.1-(2)]. Furthermore, this surface has strictly negative
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Gaussian curvature and is invariant by any translation along the geodesic line whose
asymptotic boundary is {pwo, ¢oo }, and so does not have finite total curvature.

A second example is given by a one-parameter family of entire horizontal graphs with
respect to a geodesic y of H? x {0}, that is, each one is a horizontal graph (see Definition
2.4) over an entire vertical plane orthogonal to . In fact, each graph is stable and is
invariant by hyperbolic screw motions, hence it has infinite total curvature. Moreover,
it is also an entire vertical graph, given by a simple explicit formula taking the half-
plane model for H? (see [15, equation (4), section 4] or [17, example 2, section 3]).
For each surface, the intersection with any horizontal slice is a geodesic of H?, which
depends on the slice. Therefore, the asymptotic boundary of each surface comprises
two analytic entire symmetric curves, each curve is a "exp type” graph over a vertical
line (see Figure 1). We deduce that the asymptotic boundary is not contained in two
vertical lines. Each surface is a minimally embedded plane in H? x R, stable and has
infinite total curvature. This shows that the hypothesis about the asymptotic boundary
in Theorem 2.1 cannot be removed.

—

FI1GURE 1. Entire minimal horizontal graph with infinite total curvature
(view from the outside of H? x R)

Another example is given by an end of a catenoid. Of course, a slice H? x {t} is a
trivial example.

We observe that there is another notion of horizontal graph in H? x R that appears in
the literature [15].

We point out that as an immediate consequence of Theorem 2.1 and the main theorem
in [5], we get an extension (Corollary 2.1) of the Schoen-type theorem proved by L.
Hauswirth, B. Nelli and the authors [5].
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2. MAIN THEOREM

First, we need to fix some definitions and terminology.

We choose the Poincaré disk model for the hyperbolic plane H?.

We identify H? with H? x {0}. We define a vertical plane in H? x R to be a product
v x R, where v C H? is a complete geodesic line.

Next we define the notion of “asymptotic boundary” that we use in the text. We
remark that it is different from the usual definition [2].

Definition 2.1 ((Asymptotic boundary)). We define the asymptotic boundary of H? xR
setting:

O (H? x R) := (0H? x R) U (H? x {—00, +00}) U (0H? x {—00, +00}).

This decomposition means that for a divergent sequence (p,) of H? x R there are
three possibilities for converging to infinity (up to a subsequence) . That is, setting
Pn = (Tn, t,) € H? x R, we have the following cases:
o 1, = Ts € O H? and t,, — to € R. We say that pu := (7o, t9) € OsH? X R is
an asymptotic point at finite height.
e 1, — 1o € H? and ¢, — +oo. That is (p,) converges to
Poo := (Tg, F00) € H? x {—00, +00}.
® 1, = T € O ,H? and t,, — +oo. That is (p,) converges to
Poo i= (Too, £00) € O H? X {—00, +00}.
Let Q C H? x R be a nonempty subset. We say that a point p,, € O (H? X R) is an
asymptotic point of € if there is a sequence (p,,) of €2 converging to pee.

The set of asymptotic points of €2, called the asymptotic boundary of €2, is denoted by
O0sof2.

Definition 2.2 ((Vertical planar end)). We say that L C 0. (H? x R) is a vertical line
if L = {pso} x R for some p,, € OsH?>.

We say that a complete minimal surface £ immersed in H? x R with compact boundary
is a vertical planar end, if the surface is an oriented properly immersed annulus whose

asymptotic boundary is contained in two distinct vertical lines Ly and Ls. Precisely,
there is a vertical plane P C H? x R such that 05 E N (05H? x R) C 0 P.

Definition 2.3. Let S C H? x R be a surface and let P = v x R be a vertical plane.
For any positive real number p, we denote by L,*, L, C H? the two equidistant lines
of v at distance p. Let Z, be the component of (H? x R)\ (L,* UL,”) x R containing
P.

We say that S converges to the vertical plane P if the following two properties hold:
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(1) For any p > 0 there is a compact part K, of S such that S\ K, C Z,.
(2) 0SS = OxoP.

We observe that this definition and the definition of asymptotic to the vertical plane
P given in [5, Definition 3.1] are different. But, under certain geometric assumptions
they lead to the same conclusion: cf. Corollary 2.1 below with [5, Theorem 3.1].

We recall now the definition of horizontal graph with respect to a geodesic given in [5,
Definition 3.2].

Definition 2.4. Let v C H? be a geodesic. We say that a nonempty set S C H? x R
is a horizontal graph with respect to the geodesic v, or simply a horizontal graph, if for
any equidistant line ¥ of v and for any ¢ € R, the curve 7 x {t} intersects S at most in
one point.

Now we state precisely our main theorem:

Theorem 2.1. Let E be a minimal stable vertical planar end in H?> x R and let P be
the vertical plane such that O E N (O5H? X R) C 04 P.

Then, E has finite total curvature and converges to the vertical plane P. Furthermore
if B is embedded then, up to a compact part, E is a horizontal graph.

There are many examples of complete, possibly with compact boundary, minimal sur-
faces whose asymptotic boundary is contained in the union of vertical lines or copies of
the asymptotic boundary of H2. For instance, we refer the reader to the first paper on
this subject written by B. Nelli and H. Rosenberg [10]. We remark that the first paper
about minimal ends of finite total curvature in H? x R was written by L. Hauswirth
and H. Rosenberg [7].

We recall now that F. Morabito and M. Rodriguez [9] and J. Pyo [13] have constructed,
independently, a family of minimal embedded annuli with finite total curvature. Each
end of such annuli is asymptotic to a vertical geodesic plane. In [5] we called each such
surface a two ends model surface.

The following corollary is an immediate consequence of Theorem 2.1 and the main
theorem in [5].

Corollary 2.1. An oriented complete and connected minimal surface immersed in
H? x R with two distinct embedded (nonflat) annular ends, each one being stable and
the asymptotic boundary of each end being contained in the asymptotic boundary of a
vertical geodesic plane, is a two ends model surface.

Proof of Theorem 2.1.

We have P = vy x R, where v is a geodesic of H2. We set 0,07 = {Poo, Goo }-

Given any isometry 7' of H? we denote also by T the isometry of H? x R induced by
T: (z,t) — (T(x),t).

For any geodesic o C H? we set P, := o x R, that is P, is the vertical plane containing
a.

We will proceed with the proof of Theorem 2.1 in several steps.
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Step 1. Let a C H? be any geodesic such that any = ). If a component of (H?xR)\ P,,
say A, contains P UOJF then E C A,.

This is a consequence of the maximum principle established by the authors and B.
Nelli [11, Theorem 3.1].

Step 2. For any p > 0 there is a compact part K, of E such that E'\ K, C Z,. Thus,
Osc Bl C 05 P.

Proof. Let p be a positive real number. Arguing by contradiction, let us assume that
E\ Z, is not compact, then there is an unbounded sequence p,, = (z,,t,) € E\ Z,. We
can assume that the sequence (p,) belongs to the component of (H? x R) \ (L,* x R)
which does not contain P.

FIGURE 2

Let a C H? be any geodesic such that aNvy = () and such that E and P belong to the
same component of (H? x R)\ P, (Figure 2). We denote by P, the other component
of (H?> x R) \ P,. We deduce from Step 1 that P,~ N E = (. This implies that no
subsequence of (x,) converges either to ps, or to ¢... Indeed, if a subsequence of (z,)
converges to po,, we could choose the geodesic a such that p,, € Os, contradicting
P, N E = (. The same argument shows that there is no subsequence of (x,) that
converges to other points of O, H?2.

Then, we deduce from above and from the assumptions about the asymptotic boundary
of E that (x,) is a bounded sequence in H?. Since (p,) is an unbounded sequence, we
obtain that (t,) is an unbounded sequence of real numbers. Thus, up to extracting a
subsequence of (p,) and up to a reflection with respect to H? x {0}, we may assume
that ¢, — +oo.

Now we consider the family of complete minimal surfaces My, d > 1, described in [17,
Proposition 2.1-(1)] and in the proof of [11, Theorem 3.1]. Recall that M, contains
the equidistant line L,* staying at the distance p = cosh™'(d) from ~ and that M, is
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contained in the closure of the nonmean convex component of (H? x R) \ (L,* x R).
By abuse of notation, this surface is denoted M,. The proof of the assertion follows
from the maximum principle again [11, Theorem 3.1], using the surfaces M,. We now
give a short proof for the readers convenience.

Let V, be the closure of the component of (H? x R) \ M, which does not contain P.
Observe that the height function is bounded on V,. From the considerations above,
there exists ¢ > 0 such that the following conditions hold:

e OEN (V,+(0,0,t)) =0,

e EN(V,+(0,0,t)) #0.
Let 6 C H? be a geodesic orthogonal to 7. Using that E is properly immersed, moving
M, +(0,0,t) horizontally along ¢ and considering horizontal translated copies of M, +
(0,0,t), we must find a last contact at an interior point of E and a copy of M,+(0,0,1).
This yields a contradiction with the maximum principle. ([l

For any 7 > 0 we denote by B, the open geodesic ball in H? x R centered at the origin
(0,0) € H? x R, with radius r.

Step 3. Let n3 be the third coordinate of the unit normal field on E with respect to
the product metric on H? x R. We have that nz(p) — 0 uniformly when p — 0, F.
More precisely, for any € > 0, there exists p > 0 such that for any p € (ENZ,) \ B/,
we have |n3(p)| < e.

Proof. Assume by contradiction that the assertion does not hold. Therefore there exist
e > 0 and a sequence of points p, := (2, t,) € ENZy/m, n € N*, such that [ng(p,)| > €
and the sequence (p,) is not bounded in H? x R.

Up to extracting a subsequence, we can assume that the sequence (p,) converges in
(H? x R) U 05 (H? x R).

First case: Suppose limz, € O,,H?, thus we have limxz, € 0,7y. Without loss of
generality, we can assume that x, = pso.

On the geodesic v we consider the orientation given by p, — ¢o. We choose two
points 41,y € v such that y; is between po and ys. Let C; C H? be the geodesic
orthogonal to v through y;, i = 1,2, (Figure 3(a)).

Let P, ™ be the connected component of (H? x R)\ Pg, containing ¢, in its asymptotic
boundary, we denote by Fg,~ the other component. Since £ has compact boundary,
we can choose y; and ¥y, so that OF C P, ™. Let y € 4 be the midpoint of the geodesic
segment [y, y2] of v and let 3 C H? be the geodesic orthogonal to  through y. Observe
that the vertical planes Pr, and FPg, are symmetric with respect to Pg.

Let oy C H? be a geodesic so that pe € Osr1, Oset1 N OsCi = 0 and a; N Cy = 0,
thus oy C Pg,—, (Figure 3(b)).

We denote by a, C H? the symmetric of a; with respect to . Using step 1, we can
deduce that the component of (H? x R)\ (P,, UP,,) containing P also contains FUJFE.

Let ¢ > 0. For any A > 0 we denote by T\ the hyperbolic translation of length A
along «, with the orientation ps, — ¢oo. There exists A(g9) > 0 so that the geodesics
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T(eo) (1) and Ty (as) belong to an eg-neighborhood of 4 in H? U O,H?, in the
Euclidean meaning. We set T\(cy) () := a4(g0), i = 1,2. We remark that the vertical
planes P,,(.,) belong to a eo-neighborhood of P, (in the Euclidean sense).

Let U., be the component of (H? X R) \ (Pp,(e,) U Pay(e,)) containing P. We denote by
M., the component of (H? X R) \ (Pay(cg) U Pas(zy) U Py, U Pr,) X R containing {y} x R.
We have therefore

M., =U,NPe, NPy~
Let Q., be the component of (H? xR)\ (Th(y) " (Pcy) U Pa, UP,,) such that Q.,NP # 0.
Then, by construction, for any A > A(gg) and for any p € Q.,, we have T)\(p) € U,,.

We may assume that z,, € €}, for any n.

For any n € N*, there exists a unique \,, > 0 such that T (z,) € 5. Therefore, setting
¢n =T\, (pn), we have ¢, € Pj.

For n large enough, say n > ny > 0, we have A, > A(gg) (since x,, — poo), therefore
qn € Ps N U,,, in particular ¢, € M,,.

For any n > ng, we denote by E,(g¢) the connected component of Ty, (F) N M., con-
taining g,. By construction, E,(g¢) is the component of T, (E N €, ) N M., containing
¢n. Consequently, the boundary of E,,(gq) belongs to P, U Pr, and has no intersection
with Py, (cg) U Pay(eo), DNamely:

8En(50) C P01 U P02 and 8En(50) N (Poq(eo) U Pa2(€0)) = 0. (1)
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Let d,(-,-) be the intrinsic distance on T}, (F). By construction, for n large enough,
say m > ni > ng, we have d_n(p, GT,\n(E)) > 7/2 for any p € E,(g0). Let |A,| be the
norm of the second fundamental form of T\ (FE).

Recall that the sectional curvature of H? x R is bounded (in absolute value it is bounded
by 1).

Since the end FE is stable, the translated copy T),(E) is also stable for any n > n;.
Using the fact that the distances between E,(g¢) and the boundary of Ty, (F) are
uniformly bounded from below, we deduce from [14, Main Theorem] that there exists
a constant C’ > 0, which does not depend on n > n; or on gy > 0, such that

()] < C' (2)

for any p € E, (o).
Furthermore, since the boundary of E, () belongs to Pe, U P, there exists a constant
C" > 0, which does not depend on n and or on &y, such that

d(qn, 0, (50)) > C”.

Now, we consider H? x R as an open set of Euclidean space R?, as well. We deduce
from [14, Proposition 2.3] and from Proposition 3.1 in the Appendix, that there exists
a real number 0 > 0, which does not depend on n or on ¢y, such that for any n > nq,
a part F,, of E,(g9) is the Euclidean graph of a function defined on the disk centered
at point g, with Euclidean radius ¢ in the tangent plane of F,, at ¢,. Furthermore, the
norm of the Euclidean gradient of this function is bounded by 1.

Let v be the unitary normal along E in the Euclidean metric. We denote by vs the
vertical component of v. Recall that |ns3(p,)| > ¢, hence |n3(g,)| > ¢ for any n.
Comparing the product metric of H? x R with the Euclidean metric, it can be shown
that there exists ¢’ > 0, which does not depend on n, such that |v3(g,)| > €’ for any
n > ny, (see the formula of the unit normal vector field of a vertical graph in the proof
of [18, Proposition 3.2]). This implies that the tangent planes of F,, at points ¢, have
a slope bounded below uniformly (with respect to n > ny).

Since the radius ¢ does not depend on gy, if we choose €y small enough, the Euclidean
graph F,, will have nonempty intersection with F,, (.,) and P, ,), which is not possible.

Second case: The sequence (x,,) has a finite limit in H?.

Therefore, since the sequence (p,) is not bounded, up to considering a subsequence,
and up to a vertical reflection, we can assume that ¢, — +00. We saw in step 2 that
for any p > 0 there exists ¢, > 0 such that E N {|t| > t,} C Z,. Then we can argue as
in the first case replacing the vertical planes P,, (.,) and Py, (-, by the surfaces L," x R
and L,” x R, recalling that L," U L,” = 0Z,.

Since we have proved both cases, then we have that ns(p) — 0, uniformly when p —
Ox E. O

Notation. The end is conformally parametrized by Uy := {z € C | 1 < |z| < R},
for some R > 1. The conformal, complete and proper immersion X : Up — H? x R
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is given by X = (F,h) where F : Up — H? is a harmonic map and h : Ur — R is a
harmonic function. Let o be the conformal factor of the hyperbolic metric on H?, we
set ¢ := (0 o F)?F.F.. Since the immersion X is conformal, we have ¢ = —h.2, [16,
Proposition 1] and therefore, ¢ is holomorphic.

As above, we denote by ng the third coordinate of the unit normal field on F, with
respect to the product metric. We define a function w on F, or Uy, setting ng = tanh w.
The induced metric on Uy is, [6, Equation 14]:

ds® = 4cosh?(w) |¢] |dz|*. (3)

Step 4. We have R = oo, that is the end is conformally equivalent to a punctured disk.
Moreover ¢ extends meromorphically up to the end and has the following expression
onU:={ze€C|1|z|}:

o(z) = (3 5+ P()) (4)

k>1

where P is a polynomial function.

Proof. From the expression of the metric ds?, we deduce that if 2y € Uy is a zero of
¢, then w must have a pole at zy and, therefore, n3(z9) = £1. On the other hand, by
properness we infer from step 3 that nz(z) — 0 uniformly when |z| — R. Therefore
w(z) — 0 when |z| — R. Consequently, we may assume that ¢ does not vanish on Ug.
Since the metric ds? is complete and w(z) — 0 uniformly when |z| — R, the new metric
given by |¢| |dz|? is complete too.

Since ¢ is holomorphic, a result of Osserman shows that R = oo (see [12, Lemma 9.3]).
Thus, |¢||dz|* is a complete metric on U. Furthermore, using the fact that ¢ does not
vanish, another result of Osserman shows that ¢ has at most a pole at infinity, [12,
Lemma 9.6].

Finally, recall that ¢ is the square of a holomorphic function : ¢(z) = —(h,(z))?* (see[16,
Proposition 1]). This shows that ¢ has the required form. O

From now on we assume that ¢ has no zero on U.

Step 5. The end E has finite total curvature.

We first show the following result.

Lemma 2.1. The polynomial function P is not identically zero.

of Lemma 2.1. We proceed as in the proof of [5, Lemma 2.1]. Assume by contradiction
that P = 0.
If a_; = 0 we have

/U|¢(z)\ dA < oo.

where dA is the Lebesgue measure on R%. Since w(z) — 0 when |z| — oo, this would
imply that the end F has finite area, which is absurd, see [4, Appendix: Theorem 3
and Remark 4].
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If a_; # 0 the argument is the same as in the proof of [5, Lemma 2.1]. O

of Step 5. We set \/d(2) = 3, “5* + P(z) and m = deg(P). We define on U the,
eventually, multlvalued functlon

W(z)::/(zz——l—P )dz—/\/_dz

k>1

If a_; # 0, then the function W (z) may be multivalued, but ImW (z) is single-valued,
since h(z) = 2ImW (z2). Noting that W’ = /¢, the holomorphic (possibly multivalued)
function W has no critical point.

In [5, Section 2] it is shown that there exist connected and simply connected domains
Qo, ey ng_H in C such that:

e {z€C||z| > R} Cc U™, for some R > 1.

e the restricted map Wy, := Wiq, : {4 — C is an univalent map for any k.
For z € Qp, k=0,...,2m+ 1, we set wy := W(z). By abuse of notation we just write
w = W(z). The range € := Wy () is a simply connected domain in C satisfying:

(1) If k is an even number, then Qy is the complementary of a horizontal half-strip.

The nonhorizontal component of 9€); is a compact arc and Imw is strictly
monotone along this arc. Moreover Rew is bounded from above by a real
number ay along 0, see [5, Figure 3 (a)].

(2) If k is an odd number, then Qy, is the complementary of a horizontal half-strip.

The nonhorizontal component of 9€); is a compact arc and Imw is strictly
monotone along this arc. Moreover Rew is bounded from below by a real
number by along 09, see [5, Figure 3 (b)].

Since dw = [y/¢(2)||dz| on each €, we deduce from formula (3) that the metric
induced by the immersion X on each €2 is:

ds* = 4 cosh® @(w) |dw)|?,

where, by abuse of notation, we set W(w) = (w o Wj,)(w).
Let I' C U be a smooth Jordan curve nonhomologous to zero and let C >> 0 be a
large number satisfying |W(z)| << C for any z € I'.
Using [5, Lemma 2.3] and the description of each domain Q, we can construct smooth
compact and simple arcs Ry(C), I,(C), k = 0,...,2m + 1 such that the following
conditions are satisfied.
e We have R,(C) C Q4 and I,(C) C .
o If £ is an even number then: Rew = C' and Imw is increasing from —C' up to
C' along Rk(C) Also, Imw = C and Rew is increasing from —C' up to C' along
I(C). Moreover, the arcs Ry(C) and I,,(C) make a right angle at the point
w=C+1C.



MINIMAL STABLE VERTICAL PLANAR END 11

e [f & is an odd number then: Rew = —C and Imw is increasing from —C up
to C' along Ri(C), Imw = —C' and Rew is increasing from —C up to C along
I.(C). Moreover, the arcs R(C) and [;(C) make a right angle at the point

w=—-C—1iC.
e Setting Ry (C) := W, (Rx(C)) and I(C) := W;, ' (1(C)), the curve
re) = U (Rk(C’) U Ik(C’)> is a piecewise smooth Jordan curve nonho-

mologous to zero, and any of the 4m + 4 interior angles is equal to 7/2.

Since |W(z)| << C along T', we have I N T'(C) = (. We denote by U(C') the annulus
in U bounded by I' and I'(C). To prove that the end E has finite total curvature it
suffices to show that fU(C) K dA has finite limit as C' — +o0.

Since the boundary component I' is smooth and the other boundary component I'(C)
has exactly 4m + 4 interior angles, each one being equal to 7/2, the Gauss-Bonnet

formula gives
/ KdA+/kgds+/ kyds = —2(m + 1),
U(C) r I'(C)

where k, denotes the geodesic curvature. Therefore it suffices to show that fr ©) kyds —
0 when C' = +o0.
First we prove that fIk(C) kyds — 0 when C' — 400, k =0,...,2m+1. Since a similar

argument also shows [ Re(C) kg ds — 0, we will be done.

Since Wy, : (Q, ds®) — (Q, d5?) is an isometry, we have

/ kgds:/ kg d.
I (C) I (0)

Assume that k is even. We set w = u + 4v and we consider the parametrization of
I(C) given by w(t) =t +1iC, t € [-C,C]. Using [8, Formula (42.8)] we derive the
geodesic curvature:
sinhw Jw
k t)) =ft—— — t)).
s(w(t)) 2 cosh?@ Ov (w( ))
Therefore,
1
ky(w(t))| € o—=—r%
kg (w(®))] 2 cosh w(w(t))

where V means the Euclidean gradient. It is shown in the proof of [5, Proposition

Vo (w(?))]

2.3] that there exists a positive constant § such that, outside a compact part of €, we
have: -
V& (w)| < dedw:0%)

where d(w, 8§k) is the Euclidean distance between w and 6§k. Since, by construction,
we have |Im(w)| < Cy along 0, for some Cy < C, we get

IVa(w)] < 6e®e @, on I(C).
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Therefore,

]/ kg ds | é/ |ky(w)| ds
I(C) I,(C)

_ /_C e, (w(£))] 2 cosh &(w(#) dt
< 2060 7,

We deduce that flk(C) kyds — 0 when C' — 4-o00.
If £ is an odd number, then the argument is the same.

sinhw Jw
N 2cosh®> du (w(®)).
Moreover we have along 0€); that Rew < ay if k is an even number and Rew > b if k
is an odd number. Therefore we can proceed as before to show that | Ri(C) kyds — 0
when C' — +o00. This proves that the end E has finite total curvature. 0

Along the curves Ry, the geodesic curvature is given by ky(w(t)) =+

Step 6. We have 0 F = 0, P. Thus combining with Step 2, E converges to the
vertical plane P.

Proof. We keep the notation of the proof of step 5.

Fork=0,...,2m+1, the map F, := FoW, ! : Q — H?2 is a harmonic map. Assume
that k is an even number. It is proved in [5, Theorem 2.1] that lim, o Fi(u + iC)
exists and does not depend on C' € R. Also, lim,_, o Fi11(u+iC) exists and does not
depend on C' € R, moreover the two limits are different.

Since O F'(U) = {poo,@oo}, Wwe can assume that lim, . Fx(u + iC) = ps, and
limy, oo Fri1(u+1iC) = g for any C.

Let ¢y be any real number. We want to prove that (ps,to) € O F. Since this will be
true for any ¢ty € R and since we can show the same property for ¢, we could conclude,
using step 2 that O F = 0, P. N B

Let C' > 0 be large enough so that C' >> |tg|. Let Rix(C) C Q4 be the compact arc as in
the proof of Step 5. If C is large enough then (X o W;, ™) (R, (C)) is a compact arc of E
very close of po, x [—2C,2C] in the Euclidean sense. Moreover the height is increasing
from —2C' to 2C along this arc Letting C' — 400 we can extract a sequence (p,) on
EN{t = ty} such that p, = (pso,to). We have therefore 9, P N (0,,H? x R) C O E.
Taking into account Step 2 we conclude that 0, P = 0, F and the end E converges to
the vertical plane P. O

Step 7. Assume that the end E is embedded. Then, up to a compact part, the end FE
is a horizontal graph.

Proof. The end E is conformally parametrized by U := {z € C | 1 < |z|}. The
conformal immersion X : U — F C H? x R is given by X = (F,h) where F : U — H?
is a harmonic map and h : U — R is a harmonic function. Thus, ¢ = —h.? is
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holomorphic. Moreover ¢ has the following form

6(x) = (3. S + (), (5)
k=1

where P is a polynomial function. We know from Lemma 2.1 that P is not identically
zero. Let m € N be the degree of P. Since X is an embedding and since 0, F(U) =
{Poo; ¢ }» we deduce from [5, Theorem 2.1] that m = 0.
Let € > 0 be a small number, ¢ << 1. Since ¢ does not vanish on U, we have |ns| # 1
throughout F, and therefore the end E is transversal to any slice H? x {t}. For any
p € E we denote by k(p) the geodesic curvature, in H?, of the intersection curve
between F and the horizontal slice through p. We deduce from [5, Proposition 2.3]
that, there exists a compact part K of E such that

k(p)| <e, (6)
for any p € £\ K.

Let 71 C H? be a geodesic orthogonal to 7, thus 057 N dxy1 = 0. Let p > 0, we
denote by L," and L, the two equidistant curves of y; at distance p. Let Z," be the
connected component of (H? x R) \ (L, UL,”) X R containing the vertical plane P.,.
We deduce from [5, Proposition 4.3] and (6) that for p large enough E \ Z, is a
horizontal graph with respect to ;.

We infer from [5, Theorem 2.1] that there exists Cy > 0 such that for any ¢ satisfying
[t| > Cj, the intersection E NH? x {t} is a complete and connected curve L; which is
C'-close to . Therefore, L, N Z,’ is a horizontal graph with respect to ;.

Thus, up to a compact part, E is a horizontal graph. This achieves the proof of Step
7 and concludes the proof of Theorem 2.1. O

3. APPENDIX.

Proposition 3.1. Let U C R? be an open set and let S C U be an immersed C?-surface
without boundary. Let g be a Cl-metric on U, and denote by ey the Euclidean metric.
Let A and A be the second fundamental forms of S for, respectively, the metrics geye

and g.
Assume there exist positive constants Cy,Cs such that the following conditions hold:
o |[A|<CyonS

® |9ij — Geucijlcrwy < Co and g7 — Geueijloowy < Ca, 1 < 4,5 < 3.
Then, there is a constant C3 > 0, depending on Cy and Cy and not on S, such that
|A| < C5 on S.

Proof. Let p € S and let v € 7,8 be a nonzero tangent vector. We choose Euclidean
coordinates (1, x2,x3) on U so that p = (0,0, 0), the tangent plane 7,5 coincides with
the plane {z3 = 0} and v is tangent to the z;-axis.

With these new coordinates we certainly have |gi; — eueijlor@y) < 9C2 and also
|g” - geuc,ij’CO(U) < 9027 1< 7’7.] < 3.
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Thus, a part of S is the graph of a function u defined in a neighborhood of the origin
in the plane {z3 = 0}.

Let A(v) ( resp. A(v)) be the normal curvature of S at p in the direction v for the
metric geye, resp. g. Both curvatures are computed with respect to normals inducing
the same transversal orientation along S.

A straightforward computation shows that

A(v) = u11(0)

X(U) 911\/_[ (

where V denotes the Riemannian connection of (U, g). Therefore,

(911 \Y&') ) - g(Va 8m1a9136x1 + 923812 + 9336:1:3) (0)

Since |gi; — geuc,l’j‘cl([]) < 90, and [¢7 — Geue,ijlcowy < 9C2, 1 < 4,7 < 3, there is a
constant M > 0, depending only on C5 and not on S, such that

|9<Vax13x1,9133x1 + 970, + 9333z3>(0)| <M and guv/g®(0) <M
Therefore we obtain
M) < MIA)| + M < M(JA(p)| + 1) < M(Cy + 1),
so that it suffices to choose C3 = 2M (C} + 1). O

Orss 900, + §%0s, + 6700, ) (0) + unn (0,
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