Nome:

1. Seja uma família de conjuntos $A_{\lambda,\mu}$ onde $(\lambda,\mu) \in L \times M$. Defina os conjuntos:

$$X = \bigcup_{\lambda \in L} \left(\bigcap_{\mu \in M} A_{\lambda,\mu} \right), \quad Y = \bigcap_{\mu \in M} \left(\bigcup_{\lambda \in L} A_{\lambda,\mu} \right).$$

- a) Vale necessariamente que $X \subset Y$? (Prove ou dê contra exemplo).
- b) Vale necessariamente que $Y \subset X$? (Prove ou dê contra exemplo).
- 2. Prove que todo subconjunto finito não-vazio de N tem um máximo.
- **3.** Seja A um conjunto não-enumerável, e B um subconjunto de A que é infinito-enumerável. Prove que $A \setminus B$ e A têm a mesma cardinalidade (isto é, existe uma bijeção entre os dois).
- **4.** Seja X um conjunto não-vazio qualquer, e K um corpo. Seja F o conjunto de todas as funções $f: X \to K$. Dados $f, g \in F$, definimos novos elementos f+g e $f \cdot g$ de F assim:

$$(f+g)(x) = f(x) + g(x), \quad (f \cdot g)(x) = f(x) \cdot g(x).$$

Diga (e justifique) quais aximo
as de corpo são válidos e quais não são para F com relação a essas operações.