CORRIGENDUM TO "L^p-GENERIC COCYCLES HAVE ONE-POINT LYAPUNOV SPECTRUM"

ALEXANDER ARBIETO AND JAIRO BOCHI

Lemma 4 in [1] is not true, unless k = 1 (this case was used in page 78, line 9). For arbitrary k, the correct statement is:

Lemma 4'. Given $k \in \{1, ..., d\}$ and P > 0, there is C = C(P, k, d) > 0 such that for every $A, B \in GL(d, \mathbb{R})$ with $||A||, ||B|| \leq P$, we have

$$\log^{+} \| \wedge^{k} B \| \le \log^{+} \| \wedge^{k} A \| + C \| B - A \|.$$

Proof. Let $L = \wedge^k B - \wedge^k A$. Let $\{e_i; 1 \leq i \leq d\}$ be an orthonormal basis of \mathbb{R}^d . Then $\{e_{i_1} \wedge \cdots \wedge e_{i_k}; 1 \leq i_1 < \cdots < i_k \leq d\}$ is an orthonormal basis of $\wedge^k \mathbb{R}^d$. We have

$$L(e_{i_1} \wedge \dots \wedge e_{i_k}) = (B - A)e_{i_1} \wedge Be_{i_2} \wedge \dots \wedge Be_{i_k} +$$

$$Ae_{i_1} \wedge (B - A)e_{i_2} \wedge Be_{i_3} \wedge \dots \wedge Be_{i_k} + \dots +$$

$$Ae_{i_1} \wedge \dots \wedge Ae_{i_{k-1}} \wedge (B - A)e_{i_k}.$$

It follows that $||L(e_{i_1} \wedge \cdots \wedge e_{i_k})|| \leq kP^{k-1}||B-A||$. Therefore $||L|| \leq C||B-A||$ for some constant C. Then $||\wedge^k B|| \leq ||\wedge^k A|| + C||B-A||$ and using that $\log^+(x+y) \leq \log^+ x + y$ for all $x, y \geq 0$, the lemma follows.

Now we indicate the necessary modifications in the proof of part (a) of Theorem 2. In the case condition (3) is satisfied, we let N and K be as before. Take $P=e^{KN}$ and let C be given by lemma 4'. We modify the definition of δ' in (5) to $\delta'=\min \{\eta, \varepsilon C^{-1}e^{-K(N-1)}\}$. If $x\in G$ then $\|A^N(x)\|, \|B^N(x)\|\leq P$. So we can apply lemma 4' and the estimative (8) becomes

$$\frac{1}{N} \int_{G} \log^{+} \| \wedge^{k} B^{N} \| \leq \Lambda_{k}(A) + 2\varepsilon + \frac{C}{N} \int_{G} \| B^{N} - A^{N} \|.$$

Then the upper bound in (9) becomes $\Lambda_k(A) + 3\varepsilon$, and so the first case of part (a) follows.

For the general case, we replace the first part in (10) with $k \int_{L_a} \log^+ ||A|| < \varepsilon$. Then in page 80, line 2, we can further estimate

$$\cdots \le \int_{L_2} \log^+ \| \wedge^k B \| \le k \int_{L_2} \log^+ \| B \|.$$

Using lemma 4 with k = 1, we can change line 4 to

$$\int_{L_a} \hat{\lambda}_k(B, x) \, d\mu(x) \le k \int_{L_a} \log^+ ||A|| + k \int_{L_a} ||B - A||.$$

Then we finish the proof in the same way as before.

Date: July 15, 2003.

References

[1] A. Arbieto and J. Bochi. L^p -generic cocycles have one-point Lyapunov spectrum. Stochastics and Dynamics, 3 (2003) no. 1, 73–81.

Alexander Arbieto (alexande@impa.br)

Jairo Bochi (bochi@impa.br)

 $\operatorname{IMPA},$ Estrada D. Castorina 110, Jardim Botânico, 22460-320 Rio de Janeiro, Brazil