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1 Introduction

A a diffeomorphism f is Artin-Mazur (A-M for short) if the number of isolated periodic points of
period n of f , denoted by Pn(f), grows at most exponentially fast: there is a constant C > 0 such
that

# Pn(f) ≤ exp(C n), for all n ∈ N.

Artin and Mazur proved in [3] that the A-M maps are dense in the space of C r maps endowed with
the uniform topology. Later, Kaloshin proved in [17] that the A-M diffeomorphisms having only
hyperbolic periodic points are dense in the space of C r-diffeomorphisms.

Later, in [18], Kaloshin proved that the A-M diffeomorphisms are not topologically generic in
the space of Cr-diffeomorphisms (r ≥ 2). The proof of this result involves the so-called Newhouse
domains (i.e., an open set where the diffeomorphisms with homoclinic tangencies are dense). The
standard way to get Newhouse domains is by unfold a homoclinic tangency of a C 2-diffeomorphism,
see [22]. Moreover, the existence of such domains it is only known in the C 2-topology.

The main technical step in [18] is the following. An open set K has a supergrowth for the number
of periodic points if for every arbitrary sequence of positive integers a = (an)∞n=1 there is a residual
subset Ra of K such that lim sup#Pn(f)/an = ∞ for any diffeomorphism f ∈ Ra. [18] proved that
Newhouse domains have supergrowth. Moreover, given any Newhouse domain N , there is a dense
subset D of N of diffeomorphisms having a curve of periodic points.

To get in the C1-topology a dynamical configuration generating (with some persistence) curves
of periodic points is quite simple. One can proceed as follows, consider a diffeomorphism f defined
on a manifold M of dimension n, n ≥ 3, having a non-hyperbolic homoclinic class H(Pf , f) such
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that for every g in a C1-neighbourhood Uf of f the homoclinic class H(Pg, g) (Pg is the continuation
of Pf for g) contains a saddle Qg whose index (dimension of the unstable bundle) is different from
the one of Pf . Then there is a dense subset D of Uf consisting of diffeomorphisms g having a
saddle-node. Moreover, the period of such a saddle-node can be taken arbitrarily big. Using this
fact, and noting that the behaviour of a saddle-node in the non-hyperbolic direction is close to the
identity, one gets after a new perturbation, a diffeomorphism having an interval of fixed periodic
points. The proof of these properties follows straighforwardly using the arguments in [2], which are
refinament of the constructions in [8] (we will review this construction in Section ??). Examples of
diffeomorphisms (and homoclinic classes) with this dynamical feature can be found, for instance,
in [6, 12, 13, 14].

A more interesting fact is that in some cases the periodic points generating the supergrowth
of the number of periodic points can be obtained inside in the homoclinic class, thus generating
homoclinic classes whose number of periodic points have supergrowth.

Before stating our main result let us recall that homoclinic classes were introduced by Newhouse
in [20] as a generalization of the basic sets in the Smale Decomposition Theorem (see [25]). The
homoclinic class of a hyperbolic saddle p of a diffeomorphism f , denoted by H(p, f), is the closure
of the transverse intersections of the invariant manifolds (stable and unstable ones) of the orbit
of p. A homoclinic class can be also (equivalently) defined as the closure of the set of hyperbolic
saddles q homoclinically related to p (the stable manifold of the orbit of q transversely meets the
unstable one of the orbit of p and vice-versa).

Theorem 1. There is a residual subset S(M) of Diff 1(M) of diffeomorphisms f such that, for every
f ∈ S(M), any homoclinic class of f containing saddles of different indices has superexponential
growth of the number of periodic points.

In fact, a stronger version (a bit more technical) of this theorem holds:

Theorem 2. The residual subset S(M) of Diff1(M) in Theorem 1 can be chosen as follows: Con-
sider f ∈ S(M) and any homoclinic class H(p, f) of f containing saddles of different indices α and
β, α < β. Then for every natural number γ ∈ [α, β] the number of (hyperbolic) periodic points of
index γ of H(p, f) has superxponential growth.

Finally, these two results are consequences from the following result. Consider an open set U of
Diff1(M) such that for every f in U are defined hyperbolic periodic saddles pf and qf , depending
continuously on f , having different indices. By [2, Lemma 2.1], there is a residual subset G of U
such that

• either H(pf , f) = H(qf , f) for all f ∈ G,

• or H(pf , f) ∩ H(qf , f) = ∅ for all f ∈ G.

In the first case, we say that the saddles pf and qf are genercially homoclinically linked in U .
Let

P
γ
n(H(p, f)) = {x ∈ H(p, f), fn(x) = x, x hyperbolic, and index (x) = γ}.

Motivated by the definitions above, we say that the saddles of index γ of the homoclinic class
H(pf , f) has a supergrowth in U if for every sequence of positive integers a = (an)∞n=1 there is a
residual subset Ra of U such that

lim sup
# P

γ
n(H(p, f))

an
= ∞, for every diffeomorphism f ∈ Ra.
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In this case, we say that the growth of the number of saddles of index γ of the class in lower bounded
by the sequence a = (ak).

Proposition 1.1. Consider an open set U of Diff1(M) and a pair of saddles pf and qf which are
generically homoclinically linked in U . Suppose that the indices of the saddles are pf and qf are α
and β, α < β. Then, for every natural number γ ∈ [α, β], the saddles of index γ of H(pf , f) has
supergrowth in U .

We now need that notion of chain recurrence class. A point y is f -chain attainable from the
point x if for every ε > 0 there is an ε-pseudo-orbit going from x to y. The points x and y are f -bi-
chain attainable if x is chain attainable from y and vice-versa. The bi-chain attainability relation
defines an equivalence relation on the chain recurrent set R(f) of f (i.e., the set of points x which
are chain attainable from themselves). The chain recurrence classes are the equivalence classes of
R(f) for the bi-chain attainability relation.

A diffeomorphism is tame if every chain recurrence class of f is robustly isolated. In this
case, for diffeomorphisms in a residual subset of Diff 1(M), these chain recurrence classes are in
fact homoclinic classes. In this case, one also has that non-hyperbolic homoclinic classes of C 1-
generic tame diffeomorphisms contains saddles of different indices. Thus Proposition 1.1 implies
the following:

Corollary 1.2. Every non-hyperbolic homoclinic class of a C 1-generic tame diffeomorphism has
supergrothw of the number of periodic points.

This paper can be viewed as a continuation of [2], where it is proved that, for C 1-generic
diffeomorphisms, the indices of the saddles in a homoclinic class form an interval in N: there is a
residual subset R of Diff1(M) such that for every f ∈ R and every homoclinic class H(p, f) of f ,
if the class contains saddles of indices α and β, α < β, it is also contains saddles of indices γ for
all γ ∈ [α, β] ∩ N. In fact, our proof follows from the constructions in [2] (we need to check the
steps in the construction of saddles of intermediate index). We proceed as follows, suppose that
the homoclinic class H(pf , f) H(pf , f) contains saddles qf of index α and rf of index α + 1. We
can assume that H(pf , f) = H(qf , f) = H(rf , f). we see that, after a perturbation, we can assume
that there is a saddle-node sf (or arbitrarily large period) with sf ∈ H(qf , f) = H(rf , f). This
saddle-node has a strong stable direction of the same dimension as the one as rf (i.e., of dimension
n−α− 1, n is the dimension of the ambient) a strong unstable direction of the same dimension as
the one of qf (i.e., dimension α), and a one dimensional central direction. We see that the strong
stable manifold of sf transversely meets the unstable manifold of rf and that the strong unstable
manifold of sf transversely meets the stable manifold of qf .

Consider now a sequence a = (ak)k of strictly positive integers. The previous constructions,
specially the fact that the period of sf can be taken arbitrarily large, imply that, after a small
perturbation, we can assume that the dynamics of f at sf in the central direction is exactly the
identity. Suppose that the period of the saddle-node is k (large k). We fix ak and perturb the
diffeomorphism f to get a new diffeomorphism g such that g has k ak saddles q1

g , . . . , q
k ak
g of index

α and ak saddles r1
g , . . . , r

k ak
g of index α+1 of the same period as sf and arbitrarily close to sf . By

a continuity argument, this implies that, for every i, the unstable manifolds of q i
g and ri

g meets the
stable manifold of qg and the stable manifolds of qi

g and ri
g meets the unstable manifold of qg. Next

step is to check the saddles qi
g and ri

g are in the chain recurrence class of rg and qg (see Section ??
for the precise definition). The argument now follows noting that for C 1-generic diffeomorphisms
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every chain recurrence class containing a saddle is the homoclinic class of such a saddle, see [5,
Remarque 1.10].

The previous arguments show that there is a subsequence nk → ∞ such that for every ank
the

set Ank
of diffeomorphisms g such that

# P
γ
nk

(H(pg, g))

ank

≥ nk, γ = α, α + 1

is open and dense in U . Consider now the set Ra defined as the intersection of the sets Ank
. By

construction, the set Ra is residual in U and consists of diffeomorphisms such that the growth of
saddles of indices α and α + 1 is lower bounded by the sequence a = (ak).

2 Generic properties of C
1-diffeomorphisms and perturbation lem-

mas

Using recent results on the dynamics of C1-generic diffeomorphisms, one gets a residual subset G
of Diff1(M) of diffeomorphisms f verifying the following properties:

(G1) The periodic points of f are dense in the chain recurrent set of f . In particular (recall that
for C1-generic diffeomorphisms f the non-wandering set of f is the closure of the periodic
points of f , [24]), the non-wandering set and the chain recurrent set coincide, see [5, Corollaire
1.2]

(G2) Every chain recurrence class Λ of f containing a (hyperbolic) periodic point p satisfies
Λ = H(p, f). In particular, for any pair of saddles p and q of f , either H(p, f) = H(q, f) or
H(p, f) ∩ H(q, f) = ∅, see [5, Remarque 1.10] (for previous results see [4, 11]).

In what follows, if pf is a hyperbolic periodic point of a diffeomorphism f , we denote by pg the
continuation of pf for g close to f .

(G3) For every pair of saddles pf and qf of f , there is a neighborhood Uf of f in G such that
either H(pg, g) = H(qg, g) for all g ∈ Uf , or H(pg, g) ∩ H(qg, g) = ∅ for all g ∈ Uf , see [2,
Lemma 2.1].

(G4) For every saddle pf of f whose homoclinic class H(pf , f) contains saddles of indices s and
s + k, there is a neighborhood Uf of f in G such that, for every g ∈ Uf , the homoclinic class
H(pg, g) contains saddles qs

g, q
s+1
g , · · · , qs+k

g of indices s, s + 1, and s + k, see [2, Theorem 1].

Given a homoclinic class H(p, f), denote by Perh(H(p, f)) the set of hyperbolic saddles q
homoclinically related to p, that is, the stable manifold of the orbit of q meets the unstable manifold
of the orbit of p and vice-versa. Note that homoclinically related saddles have the same index. The
set Perh(H(p, f)) is dense in H(p, f), see, for instance, [20].

We say that a periodic point p of period π(p) of a diffeomorphism f has real multipliers if
every eigenvalue of the linear isomorphism Df π(p)(p) : TpM → TpM is real, positive, and has
multiplicity one. We denote by PerR(H(p, f)) the subset of Perh(H(p, f)) of periodic points with
real multipliers.
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(G5) For every diffeomorphisms f ∈ G and every nontrivial homoclinic class H(p, f) of f , the
set PerR(H(p, f)) is dense in H(p, f), see [2, Proposition 2.3], which is just a dynamical
reformulation of [7, Lemmas 1.9 and 4.16].

We close this section quoting some standard perturbations lemmas in C 1 dynamics. The first
one allows us to perform dynamically perturbations of cocycles:

Lemma 2.1. (Franks, [15]). Consider a diffeomorphism f and an f -invariant finite set Σ. Let
A be an ε-perturbation of the derivative of f in Σ (i.e., the linear maps Df(x) and A(x) are ε-close
for all x ∈ Σ). Then, for every neighborhood U of Σ, there is g ε-C 1-close to f such that

• f(x) = g(x) for every x ∈ Σ and every x /∈ U ,

• Dg(x) = A(x) for all x ∈ Σ.

Next lemma allows us to obtaining intersection between invariant manifolds of periodic points:

Lemma 2.2. (Hayashi’s Connecting Lemma, [16]) Let pf and qf be a pair of saddles of a
diffeomorphism f such that there are sequences of points yn and of natural numbers kn such that

• yn → y ∈ W u
loc(pf , f), y 6= pf , and

• fkn(yn) → z ∈ W s
loc(qf , f), z 6= pf .

Then there is a diffeomorphism g arbitrarily C1-close to f such that W u(pg, g) and W s(qg, g) have
an intersection arbitrarily close to y.

Recall that a diffeomorphism f has a heterodimensional cycle associated to the saddles p and q
if p and q have different indices and both intersections W s(Op) ∩ W u(Oq) and W s(Oq) ∩ W u(Op)
are non-empty. An immediate consequence of the connecting lemma is the following:

Lemma 2.3. Let U be an open set of Diff1(M) such that the saddles pf and qf of indices α and
β, α < β, are generically homoclinically linked in U . There there is a dense subset D of U of
diffeomorphisms f having a heterodimensional cycle associated to pf and qf .

This result follows applying twice the Connecting Lemma to the diffeomorphisms in U . First,
using the transitivity of the homoclinic class H(pf , f), one gets a dense subset T of U such that
the unstable manifold of the orbit of qf and the stable manifold of the orbit of pf have non-empty
intersection. As the sum of the dimensions of these manifolds is strictly greater than the dimension
of the ambient, one can assume that this intersection is transverse. Thus such an intersection
persists by perturbations. Hence, the set T contains an open and dense subset S of U such that
W s(Opf

) ∩ W u(Oqf
) 6= ∅, for every f ∈ S. A new application of the Connecting Lemma, now

interchanging the roles of pf and qf , gives a dense subset D of S (thus a dense subset of U) such
that W s(Oqf

) ∩ W u(Opf
) 6= ∅. Thus every diffeomorphisms f ∈ D has a heterodimensional cycle

associated to pf and qf . For details see [2, Section 2.4]
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3 Super-growth of periodic orbits in non-hyperbolic homoclinic

classes

In this section, we prove Proposition 1.1. The main step of this proof is the following:

Proposition 3.1. Let (ak)k be a sequence of natural numbers and U an open set of Diff 1(M) such
that there are saddles pf and qf generically homoclinically linked in U .

Let α and β, α < β, be the indices of the saddles pf and qf . Then, for every γ ∈ [α, β]∩N and
every k ∈ N, there is a residual subset Gγ(k) of U such that for every diffeomorphism ϕ ∈ Gγ(k)
there is nϕ(k) ≥ k such that the homoclinic class H(pϕ, ϕ) contains at least (nϕ(k) anϕ(k)) different
periodic orbits of period nϕ(k) and index γ.

Proof of Proposition 1.1: Proposition 1.1 is a straightforward consequence of Proposition 3.1.
Consider any sequence (ak)k of natural numbers and fix a natural number γ ∈ [α, β]. Consider the
intersection

Rγ = Rγ((ak)k) =
⋂

k

Gγ(k).

By construction, this set is residual in U . We claim that, for every ϕ ∈ Rγ , it holds

lim sup
# P

γ
k(H(pϕ, ϕ))

ak
= ∞.

Since ϕ ∈ Rγ , one has that ϕ ∈ Gγ(k) for all k ∈ N. Thus, for each k, there is nk(ϕ) ≥ k such
that the homoclinic class of H(pϕ, ϕ) contains at least (nϕ(k) anϕ(k)) periodic orbits of index γ
and period nϕ(k). As nk(ϕ) → ∞, there is a strictly increasing subsequence (nkj

) of (nk(ϕ)) with
(nkj

) → ∞ and such that

# P
γ
nkj

(H(pϕ, ϕ))

ankj

≥ nkj
.

This implies our claim.
Taking the residual subset R((ak)) of U defined by

R((ak)) =

β
⋂

γ=α

Rγ((ak))

one concludes the proof of the proposition. 2

Proof of Proposition 3.1: Let G be the residual subset of Diff 1(M) in Section 2 and write
GU = G ∩ U (this set is residual in U).

Lemma 3.2. Let U be an open set such that there are saddles pf and qf of indices α and β,
α < β, which are generically homoclinically linked in U . Then there for every g ∈ GU there is a
neighbourhood Vg in GU such that for every ϕ ∈ Vg there are saddles qα

ϕ, qα+1
ϕ , . . . , qβ

ϕ such that:

• H(pg, g) = H(qα
g , g) = · · · = H(qβ

g , g) = H(qg, g),

• the index of qi
ϕ is i,
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• every saddle qi
ϕ has real multipliers,

• the saddles qi
ϕ depend continuously on ϕ.

Proof: By generic properties (G2), (G3), and (G4), for every ϕ ∈ GU there are saddles

qα
ϕ, qα+1

ϕ , . . . , qβ
ϕ of indices α, α + 1, . . . , β such that

H(pϕ, ϕ) = H(qα
ϕ, ϕ) = · · · = H(qβ

ϕ, ϕ) = H(qϕ, ϕ).

Moreover, by (G3), these saddles can be chosen depending continuously on a small neighbourhood
of ϕ. Finally, by (G5), we can assume that these saddles have real multipliers. This concludes the
proof of the lemma. 2

Given a pair of hyperbolic periodic points p and q, we write p <us q if the unstable manifold
W u(Op) of the orbit Op of p intersects transversally the stable manifold W s(Oq) of the orbit Oq of
q: there exists a point x ∈ W u(Op) ∩ W s(Oq) such that TxM = TxW u(Op) + TyW

s(Oq).

Remark 3.3. The property <us is open in Diff1(M): let pf and qf be hyperbolic periodic points
of a diffeomorphism f with pf <us qf , then there is a neighborhood Vf of f in Diff1(M) such that
pg <us qg for every g ∈ Vf .

The main step of the proof of Proposition 3.1 is the following:

Proposition 3.4. Let (ak)k a sequence of natural numbers. Let f be a diffeomorphism having a
pair of hyperbolic periodic saddles pf and qf with real multipliers. Assume that the indices of pf

and qf are γ and γ + 1 and that f has a heterodimensional cycle associated to pf and qf .
Then for every k ∈ N there are nk ≥ k and a diffeomorphism g arbitrarily C1-close to f having

(nk ank
) saddles rγ

1 , . . . , rγ
nk ank

of period nk and index s and (nk ank
) saddles rγ+1

1 , . . . , rγ+1
nk ank

of
period nk and index γ + 1 such that

pg <us rγ
i <us qg and pg <us rγ+1

i <us qg, for all i = 1, . . . , nk ank
.

Moreover, the orbits of the saddles rγ
1 , . . . , rγ

nk ank
, rγ+1

1 , . . . , rγ+1
nk ank

are different.

We postpone the proof of this proposition to Section 4. We know prove Proposition 3.1 assuming
it. We need the following result (we give the proof for completeness).

Lemma 3.5 (Claim 4.3 in [2]). Let f be a diffeomorphism having a pair of saddles p and q such
that H(p, f) = H(q, f). Consider a saddle r of f such that p <us r <us q. Then the saddles p, r,
and q are in the same chain recurrent class.

Proof: It suffices to see that for every ε > 0 there is a closed ε-pseudo-orbit containing q, r and p.
First, as H(p, f) = H(q, f) and this set is transitive, there is x1 ε/2-close to f(q) such that fn1(x1)
is ε/2-close to p.

Since p <us r, there is some x2 ∈ W u(Op, f)∩W s(Or, f). Therefore there are positive numbers
n2 and m2 such that f−n2(x2) is ε/2-close to f(p) and fm2(x2) is ε/2-close to r. Similarly, r <us q
gives x3 ∈ W u(Or, f)∩W s(Oq, f) and positive numbers n3 and m3 such that f−n3(x3) is ε/2-close
to f(r) and fm3(x3) is ε/2-close to q.
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The announced closed ε-pseudo-orbit containing p, r, and q is obtained concatenating the
segments of orbits above:

q, x1, . . . , f
n1−1(x), p, f−n2(x2), . . . , f

m2−1(x2), r, f
−n3(x3), . . . , f

m3−1(x3), q.

The proof of the lemma is now complete. 2

To conclude the proof of Proposition 3.1. Fix γ ∈ [α, β − 1] ∩ N and g ∈ GU = G ∩ U .

Lemma 3.6. Let γ ∈ [α, β − 1] ∩ N, ϕ a diffeomorphism in GU , and qγ
ϕ and qγ+1

ϕ saddles as
in Lemma 3.2 (real multipliers and indices γ and γ + 1). There is a dense subset Dγ

R
of U of

diffeomorphisms φ having a heterodimensional cycle associated to qγ
φ and qγ+1

φ .

Proof: Take any ϕ ∈ GU . By Lemma 3.2, the diffeomorphism ϕ has saddles qγ
ϕ and qγ+1

ϕ such
that H(qγ

g ) = H(qγ+1
g ) for every g ∈ G close to ϕ. By Lemma 2.3, there is φ arbitrarily close to ϕ

with a heterodimensional cycle associated to qγ
φ and qγ+1

φ . This ends the proof of the lemma. 2

Fix k ∈ N. Take φ ∈ Dγ
R

and consider the cycle associated to qγ
φ and qγ+1

φ . This cycle satisfies
the hypothesis of Proposition 3.4. Thus, by Proposition 3.4 and Remark 3.3, there is an open set
Vφ(k) such that

• φ is in the closure of Vφ(k);

• for every diffeomorphism g ∈ Vφ(k), there is ng(k) > k such that g has (ng(k) ang(k)) different
orbits Orγ

1
, . . . ,Orγ

ng(k) ang(k)

of period ng(k) and index γ and (ng(k) ang(k)) different orbits

Orγ+1
1

, . . . ,Orγ+1
ng(k) ang(k)

of period ng(k) and index (γ + 1);

• the saddles verify pg <us rγ
i <us qg and pg <us rγ+1

i <us qg, for all i = 1, . . . , ng(k) ang(k).

Consider the set
Vγ(k) =

⋃

φ∈Dγ
R

Vφ(k).

By construction, the set Vγ(k) is open and dense in U . Consider now the set

Gγ(k) = GU ∩ Vγ(k) ⊂ G.

This set is residual in U . By construction, pg <us rγ
g <us qg and pg <us rγ+1

g <us qg, thus Lemma 3.5

implies that chain recurrence classes of pg, r
γ
g , rγ+1

g , and qg coincide for all g ∈ Gγ(k) ⊂ G. By (G2),
the homoclinic classes of these saddles coincide for all g ∈ Gγ(k) and all i = 1, . . . , ng(k) ang(k).
Since ng(k) ≥ k, the set Gγ(k) verifies the conclusion in the Proposition 3.1. 2

4 Generation of saddles at heterodimensional cycles

In this section, we prove Proof of Proposition 3.4. We need the following preparatory result:
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Proposition 4.1. Let f be a diffeomorphism having a pair of periodic saddles pf and qf of indices
γ and γ + 1, respectively, and with real multipliers. Assume that the diffeomorphism f has a
heterodimensional cycle associated to pf and qf .

Then for every C1-neighborhood U of f there are constants k0 ∈ N and C > 0 such that for
every pair of natural numbers ` and m large enough there is a diffeomorphism g`,m ∈ U having a
periodic point r`,m such that

1. the period π(r`,m) of r`,m is ` π(pf ) + mπ(qf ) + k0;

2. the point r`,m is partially hyperbolic, there is a Df π(r`,m)(r`,m)-invariant splitting Tr`,m
M =

Ess ⊕Ec ⊕Euu such that Ess and Euu are uniformly hyperbolic (contracting and expanding,
respectively), dimEc = 1, and dimEss = γ;

3. the eigenvalue λc(r`,m) of Dfπ(r`,m)(r`,m) corresponding to the central direction Ec satisfies

1/C < λc(r`,m) < C;

4. pg <us r`,m <us qg.

Sketch of the proof of Proposition 4.1: This proposition follows form the arguments in [2,
Theorem 3.2]. For completeness, we outline the main steps and ingredients of the proof of this
proposition. For details, see [2, 8].

By hypothesis, the saddles pf and qf have real eigenvalues, thus there are eigenvalues λc of
Dfπ(pf )(pf ) and βc of Dfπ(qf )(qf ) such that 1 < λc < λ for every expanding eigenvalue λ of
Dfπ(pf )(pf ) and 1 > βc > β for every contracting eigenvalue β of Df π(qf)(qf ). The eigenvalues λc

and βc are the central eigenvalues of the cycle.
The fact that the saddles pf and qf have real multipliers also implies that there is a (unique)

Df -invariant dominated splitting1 defined on the union of the orbits Opf
of pf and Oqf

of qf ,

TxM = Ess
x ⊕ Ec

x ⊕ Euu
x , x ∈ Opf

∪ Oqf
,

where dimEc
x = 1 and dimEss

x = γ. We let ν = dimEuu
x .

After a C1-perturbation of f , one gets a new heterodimensional cycle (associated to the same
saddles pf and qf with real multipliers) and local coordinates at these saddles such that the dy-
namics of f in a neighborhood of the cycle is affine (this corresponds to the notion of affine
heterodimensional cycle in [2, Section 3.1]). Let us explain this point more precisely. For that we
introduce some notations. The elements are depicted in the figure.

We fix small neighborhoods of Up and Uq of the orbits of pf and qf and heteroclinic points
x ∈ W s(pf , f) ∩ W u(qf , f) and y ∈ W u(pf , f) ∩ W s(qf , f). After a perturbation, we can assume
that

1A Df -invariant splitting E ⊕ F of TM over an f -invariant set Λ is dominated if the fibers of the bundles have
constant dimension and there are a metric || · || and a natural number n ∈ N such that

||Df
n(x)E|| · ||Df

−n(x)F || <
1

2
, for all x ∈ Λ.

For splittings with three bundles E ⊕F ⊕G, domination means that the splittings (E ⊕F )⊕G and E ⊕ (F ⊕G) are
both dominated.
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Figure 1: An affine heterodimensional cycle

• the intersection between W u(pf , f) and W s(qf , f) at x is transverse, and

• the intersection between W s(pf , f) and W u(qf , f) at y is quasi-transverse (i.e., TyW
s(pf , f)+

TyW
u(qf , f) = TyW

s(pf , f)⊕ TuW s(qf , f) and this sum has dimension n− 1, where n is the
dimension of the ambient).

Then there are neighborhoods Ux of x and Uy of y and natural numbers n and m such that

f−n(Ux) ⊂ Up, fn(Ux) ⊂ Uq, fm(Uy) ⊂ Up, and f−m(Uy) ⊂ Uq.

We say that t(p,q) = 2n and t(q,p) = 2m are transition times from Up to Uq and from Uq to Up,
respectively. The maps

T(p,q) = f t(p,q) and T(q,p) = f t(q,p)

are transition maps from Up to Uq and from Uq to Up. These maps are defined on small neighbor-
hoods U−

x of f−n(x) and U−
y of f−m(y).

Using the domination, by increasing n and m and after a small perturbation, one can assume
that the transition maps preserve the dominated splitting Ess ⊕ Ec ⊕ Euu defined above. More
precisely, in the neighborhoods Up and Uq the expressions of fπ(pf ) and fπ(qf ) are linear. Then, in
these local charts, the splitting Ess ⊕ Ec ⊕ Euu is of the form

Ess = R
γ × {(0, 0ν )}, Ec = {0γ} × R × {0ν}, Euu = {(0γ , 0)} × R

ν.

In this way, one also has that the maps

T(p,q) = f t(p,q) : U−
x → Uq and T(q,p) = f t(q,p) : U−

y → Up

are affine maps preserving the splitting Ess ⊕ Ec ⊕ Euu. More precisely,

T(i,j) = (T s
(i,j), T(i,j), T

u
(i,j)), i, j = p, q or i, j = q, p,
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where
T s

(i,j) : R
γ → R

γ , T c
(i,j) : R → R, T u

(i,j) : R
ν → R

ν ,

are affine maps such that T s
(i,j) is a contraction (i.e., its norm is less than one), T u

(i,j) is an expansion

(i.e., (T u
(i,j))

−1 is a contraction). We let τ(i,j) the derivative of T c
(i,j). In fact, T c

(q,p) is a linear map.
The previous construction gives the dynamics of f in a neighbourhood V of the cycle,

V = Up ∪ Uq ∪
(

∪n
i=−nf i(Ux)

)

∪
(

∪m
i=−mf i(Uy)

)

.

Next step consists in considering the unfolding of this cycle. For this we consider a one-parameter
family of transitions (T(q,p),ρ)ρ from qf to pf defined as follows

T(q,p),ρ = T(q,p) + (0γ , ρ, 0ν).

To each small ρ corresponds a diffeomorphism fρ (which is a local perturbation of f at the het-
eroclinic point y) such that, for every large ` and m, there is a small subset U`,m of U−

x such
that

f
π`,m
ρ |U`,m

= f ` π(pf ) ◦ T(q,p),ρ ◦ f ` π(qf ) ◦ T(p,q), π`,m = ` π(pf ) + t(q,p) + mπ(qf ) + t(p,q).

Moreover, f
π`,m
ρ maps U`,m into Up.

Next step is to find a parameter ρ = ρ`,m such that fρ has a periodic point of period π`,m. Note
that, by construction, in a neighbourhood of the cycle, the diffeomorphism fρ keeps invariant the
codimension one foliation generated by the sum of the strong stable and strong unstable directions
(hyperplanes parallel to R

γ ×{0}×R
ν). Also note that fρ acts hyperbolically on these hyperplanes.

We consider the quotient dynamics of fρ by this strong stable/strong unstable foliation, obtaining
a one-dimensional map. Fixed points of this quotient dynamics will correspond to periodic points
of the diffeomorphism fρ. Let us explain this point more precisely.

Suppose for simplicity that, in local coordinates,

x− = f−n(x) = (0γ , 1, 0ν) ∈ Up and x+ = fn(x) = (0γ ,−1, 0ν) ∈ Uq.

Assume, for instance, that T c
(q,p)(z) = τ(q,p) z (in fact, the case T c

(q,p)(z) = −τ(q,p) z is simpler). Fix
now large ` and m and take ρ`,m such that

λ` (−τ(q,p) βm + ρ`,m) = 1, ρ`,m = λ−` + τ(q,p) βm.

This choice and T c
(p,q)(1) = −1 imply that the quotient dynamics satisfy:

λ` ◦ T c
(q,p),ρ ◦ βm ◦ T c

(p,q)(1) = λ` (−τ(q,p) βm + ρ`,m) = 1

Thus 1 is a fixed point of the quotient dynamics.
Since f`,m = fρ`,m

preserves the Ess, Euu, and Ec directions, the hyperbolicity of the directions
Ess and Euu implies that the map

f ` π(pf ) ◦ T(q,p),ρ`,m
◦ fmπ(qf ) ◦ T(p,q)

has a fixed point r`,m of the form r`,m = (rγ
`,m, 1, rν

`,m) in U`,m. The point r`,m is a periodic point
of period π`,m of f`,m.

11



By construction, the periodic point r`,m is uniformly expanding in the Euu direction, uniformly
contracting in the Ess direction, and the derivative of Df

π`,m

`,m (r`,m) the central direction is

κ`,m = λ` τ(p,q) βm τ(q,p).

Note that we can choose large ` and m with

λ−1 ≤ βm τ(p,q) λ` τ(q,p) ≤ λ.

Taking C = λ and k0 = t(p,q) + t(q,p), we get the first three items in the proposition.
The last item of the proposition, pg <us< r`,m <us qg is exactly [2, Proposition 3.10]. Consider

the points h`,m and d`,m of the f`,m orbit of r`,m,

h`,m = f−`π(pf )(r`,m) = (hγ
`,m, λ−`, hν

`,m),

d`,m = f
−t(q,p)

`,m (h`,m) = T
−1
(q,p),ρ`,m

(h`,m) = f
m+t(p,q)

`,m (r`,m) = (dγ
`,m, βm, dν

`,m).

The key step is to observe that, by construction,

∆s
`,m = [−1, 1]γ × {(λ−`, hν

`,m)} ⊂ W s(h`,m, f`,m) ⊂ Up,

∆u
`,m = {(dγ

`,m, βm)} × [−1, 1]ν ⊂ W u(d`,m, f`,m) ⊂ Uq,

where hγ
`,m → 0γ and dν

`,m → 0ν . For details, see [2, Lemma 3.11].

Noting that, in the the coordinates in Up, {0
γ}×[−1, 1]ν+1 is contained in the unstable manifold

of the orbit of pf = pf`,m
, one has pf`,m

<us r`,m. The relation r`,m <us qf`,m
follows noting that,

in the local coordinates in Uq, [−1, 1]γ+1 × {0ν} is contained in the unstable manifold of the orbit
of qf = qf`,m

. 2

4.1 Proof of Proposition 3.4

Using Lemma 2.1, we next consider a perturbation of the dynamics of f`,m along the orbit of r`,m

consisting in a multiplication of the derivative of f`,m along the central direction by a factor

(κ`,m)1/π`,m

In this way, we have a diffeomorphism g`,m such that r`,m is a partially hyperbolic periodic point of
period π`,m whose derivative in the central direction is the identity. Moreover, if W ss(Or`,m

, g`,m) is
the strong stable manifold of the orbit of r`,m and W uu(Or`,m

, g`,m) is the strong unstable manifold
of the orbit of r`,m we have that

W u(Op, g`,m) t W ss(Or`,m
, g`,m) 6= ∅ and W uu(Or`,m

, g`,m) t W s(Oq, g`,m) 6= ∅,

where t means transverse intersection. We fix disk Υs ⊂ W ss(Or`,m
, g`,m) and Υu ⊂ W uu(Or`,m

, g`,m)
such that Υs t W u(Op, g`,m) 6= ∅ and Υu t W s(Op, g`,m) 6= ∅.

Given now any κ, κ > π`,m aπ`,m
((ak) is the sequence of natural numbers in the proposition),

there is φκ
`,m arbitrarily close to g`,m such that φκ

`,m has κ-saddles rs
1, . . . , r

s
κ of index γ + 1 and

κ-saddles ru
1 , . . . , ru

κ of index γ, all of them of period π`,m, whose orbits are arbitrarily close to the
g`,m-orbit of r`,m. This implies that

12



• The stable manifold of the orbit of rs
i contains a disk close to Υs. Thus W u(Op, φ

κ
`,m) t

W s(Ors
i
, φk

`,m) 6= ∅, and p <us rs
i .

• The unstable manifold of the orbit of rs
i contains a disk close to Υu. Thus W s(Oq, φ

k
`,m) t

W u(Ors
i
, φk

`,m) 6= ∅, and rs
i <us q.

A similar argument holds for the saddles ru
1 , . . . , ru

κ of index (γ + 1). Therefore, p <us< ru
i <us q,

for all i = 1, . . . κ. This completes the proof of the proposition. 2
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[11] C. Carballo, C. Morales, and M.J. Paćıfico, Homoclinic classes for C 1-generic vector fields,
Ergodic Th. and Dynan. Syst., 23, 403-415, (2003).

[12] L.J. Dı́az, Robust nonhyperbolic dynamics and heterodimensional cycles, Ergodic. Th. and
Dynam. Sys., 15, 291-315, (1995).

[13] L.J. Dı́az, Persistence of cycles and non-hyperbolic dynamics at the unfolding of heterodimen-
sional cycles, Nonlinearity, 8, 693-715, (1995).

13



[14] L.J. Dı́az and J. Rocha, Partially hyperbolic and transitive dynamics generated by heteroclinic
cycles, Ergodic Th. and Dynam. Syst., 25, 25-76, (2001).

[15] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. A.M.S., 158, 301-308,
(1971).

[16] S. Hayashi, Connecting invariant manifolds and the solution of the C 1-stability and Ω-stability
conjectures for flows, Ann. of Math., 145, 81-137, (1997).

[17] V. Yu. Kaloshin, An extension of Artin-Mazur theorem, Annals of Math., 150, 729-741, (2000).

[18] V. Yu. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic
orbit, Comm. Math. Phys, 211, 253-271, (2000).
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