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Abstract

We prove that there is a residual subset S in Diff 1(M) such that, for
every f ∈ S, any homoclinic class of f with invariant one dimensional
central bundle containing saddles of different indices (i.e. with different
dimensions of the stable invariant manifold) coincides with the support
of some invariant ergodic non-hyperbolic (one of the Lyapunov exponents
is equal to zero) measure of f .

1 Introduction

How to characterize the absence of uniform hyperbolicity? What dynamical
structures can not exist in the uniformly hyperbolic setting but must be present
in the complement? In this paper, we study how the non-hyperbolicity is de-
tected in the ergodic level. Namely, we consider non-hyperbolic invariant mea-
sures as indication of non-hyperbolicity, and construct such measures with full
support for partially hyperbolic homoclinic classes.

Some other candidates for the role of “non-hyperbolic structure” are the
cycles (homoclinic tangencies and heterodimensional cycles), super-exponential
growth of the number of periodic points [24, 7], absence of shadowing property
[9, 37, 3, 34], and non-existence of symbolic extensions [18, 4, 16].

Keywords: dominated splitting, homoclinic class, Lyapunov exponent, partial hyperbol-
icity, heterodimenional cycle, support of an invariant measure.
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Recall that if µ is an ergodic measure of a diffeomorphism f : M →
M, dimM = m, then there is a set Λ of full µ-measure and real numbers
χ1

µ ≤ χ2
µ ≤ · · · ≤ χm

µ such that, for every x ∈ Λ and every non-zero vector
v ∈ TxM , one has limn→∞ 1/n log ||Dfn(v)|| = χi

µ for some i = 1, . . . ,m, see
[30, 26]. The number χi

µ is the i-th Lyapunov exponent of the measure µ.

Definition 1.1. An ergodic invariant measure of a diffeomorphism is called
non-hyperbolic if at least one of its Lyapunov exponents is equal to zero.

Inspired by Palis’ density conjecture ([31]), we stated the following ([15]):

Conjecture 1. In Diff r(M), r ≥ 1, there exists an open and dense subset U ⊂
Diff r(M) such that every diffeomorphism f ∈ U is either uniformly hyperbolic
or has an ergodic non-hyperbolic invariant measure.

We consider the question of the existence of non-hyperbolic measures for
homoclinic classes. The homoclinic class of a hyperbolic periodic point P of a
diffeomorphism f , denoted by H(P, f), is the closure of the transverse intersec-
tions of the invariant manifolds of the orbit of P , see [29]. A homoclinic class
is a transitive set (there exists a dense orbit) where periodic points also form a
dense subset. Note that a homoclinic class may fail to be hyperbolic and may
contain saddles of different s-indices (dimension of the stable bundle). This is
precisely the setting we consider in this paper. In many important cases homo-
clinic classes are used to structure the global dynamics, playing a role similar to
that of the basic sets in the hyperbolic theory (in fact, basic sets are a special
case of homoclinic classes). In [15] we show the following:

Theorem. There is a residual subset S of Diff 1(M) such that, for every f ∈ S,
any homoclinic class of f containing saddles of different s-indices (dimension of
the stable bundle) contains also an uncountable support of an invariant ergodic
non-hyperbolic measure of f .

In view of this result, it is natural to consider the following question about
the support of the ergodic non-hyperbolic measures in non-hyperbolic homo-
clinic class.

Question 1. When does a non-hyperbolic homoclinic class equal to the support
of a non-hyperbolic ergodic measure?

The main result of this paper is the following (for an accurate formal state-
ment see Theorem 1):
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Main result. For a C1-generic diffeomorphism f , every homoclinic class H
with a 1-dimensional central direction and saddles of different indices is the
support of an ergodic non-hyperbolic invariant measure µ of f , H = supp µ.

In an opposite direction, we would like to mention the results in [1]: for
C1-generic diffeomorphisms generic measures supported on isolated homoclinic
class are ergodic and hyperbolic (all Lyapunov exponents are non-zero).

The constructions in [15] translate to the setting of homoclinic classes the
arguments in [21] and [25] about the existence of non-hyperbolic ergodic mea-
sures for skew products defined over the circle S1 and the corresponding smooth
realizations. There the circle S

1 corresponds to the center direction and the fact
that the central direction is one-dimensional is essential. This condition can be
precisely formulated in terms of dominated splittings.

Definition 1.2 (Dominated splitting and partial hyperbolicity). Consider a
diffeomorphism f and a compact f -invariant set Λ. A Df -invariant splitting
TΛM = E ⊕ F over Λ is dominated if the fibers Ex and Fx of E and F have
constant dimension and there is a constant k ∈ N such that

||Dxf
k(u)||

||Dxf k(w)||
<

1

2
,

for every x ∈ Λ and every pair of unitary vectors u ∈ Ex and w ∈ Fx.
In some cases, we consider splittings with three bundles. A Df -invariant

splitting
TΛM = E ⊕ F ⊕ G

over Λ is dominated if both splittings (E⊕F )⊕G and E⊕(F⊕G) are dominated.
The dominated splitting TΛM = E ⊕ F ⊕G is partially hyperbolic if E and

G are both uniformly hyperbolic and at least one of them is not empty. We say
that F is the central direction of the splitting.

In [15] general (non-hyperbolic) homoclinic classes are considered (i.e., there
is no hyperbolic-like assumptions). A key step in [15] is to identify a partially
hyperbolic region Λ of the homoclinic class where the (non-hyperbolic) central
direction has dimension one: there is a partially hyperbolic splitting TΛM =
E ⊕ F ⊕ G, where F is one-dimensional and non-hyperbolic and E and G are
uniformly hyperbolic.

In general, this partially hyperbolic region Λ is properly contained in the
whole homoclinic class, thus the support of the obtained measure is not the
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whole homoclinic class. Prototypical examples of this case are the Derived from
Anosov diffeomorphisms defined on T

3 obtained via Hopf bifurcations, see [12,
11], where the homoclinic classes are the whole torus and its dominated splitting
is of the form TT

3 = E ⊕ Eu, where E is two-dimensional, non-hyperbolic,
and undecomposable (it does not contain one-dimensional invariant directions).
Thus in these cases the arguments in [15] do not provide a non-hyperbolic
measure supported on the whole homoclinic class.

On the other hand, when the non-hyperbolic central bundle has a one-
dimensional invariant direction one can prove the following:

Theorem 1. Let M be a closed manifold, dimM ≥ 3. There is a residual
subset R of Diff 1(M) such that for every f ∈ R and every homoclinic class
H(f) of f such that

• H(f) has a dominated splitting TH(f)M = E ⊕ F ⊕ G, where F has di-
mension one,

• H(f) contains saddles of s-indices dim(E) and dim(E⊕F ) = dim(E)+1,

there is a non-hyperbolic ergodic f -invariant measure µH(f) such that

supp µH(f) = H(f).

The simplest setting for our result is the one of homoclinic classes hav-
ing a partially hyperbolic splitting with a one-dimensional central direction.
There are two main sorts of such homoclinic classes. On the one hand, there
are the non-hyperbolic homoclinic classes generated by unfolding heterodimen-
sional cycles, see [14, 17]. On the other hand, there are robustly transitive and
non-hyperbolic diffeomorphisms (in this case, the homoclinic class is the whole
ambient manifold). Recall that a diffeomorphism f is robustly transitive if there
is a neighborhood Uf of f in Diff 1(M) consisting of transitive diffeomorphisms :
every g ∈ Uf has a dense orbit in M .

Among the robustly transitive diffeomorphisms with one-dimensional central
direction, we mention the Derived from Anosov diffeomorphisms (via saddle-
node or fork bifurcations) in [26], the time-one maps of transitive Anosov vector
fields, see [5], and the perturbations of products of Anosov diffeomorphisms
and maps defined on the circle (skew products), [5, 35, 33]. For these cases,
Theorem 1 just can be read as follows:
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Corollary 1. Let M be a closed manifold, dimM ≥ 3. There is a residual
subset R of Diff 1(M) such that for every f ∈ R and every partially hyperbolic
homoclinic class of f having saddles of different indices and an one-dimensional
central bundle there is a non-hyperbolic ergodic f -invariant measure whose sup-
port is the whole homoclinic class.

We next discuss the interplay between the results above, the sorts of dom-
inated splittings of homoclinic classes, and the occurrence of homoclinic tan-
gencies. Consider the subset HT1(M) ⊂ Diff 1(M) of diffeomorphisms f having
a homoclinic tangency associated to some saddle (i.e., the invariant manifolds
of the saddle have some non-transverse intersection). Define the (open) set of
diffeomorphisms far from homoclinic tangencies by

FT1(M) = Diff 1(M) \ HT1(M).

A recent result by Yang states the following dichotomy for C1-generic dif-
feomorphisms f far from homoclinic tangencies (i.e., diffeomorphisms f in a
residual subset of FT1(M)): any homoclinic class of f is either hyperbolic or
it supports a non-hyperbolic ergodic measure, see [36]. Note that, in principle,
there is the possibility for a generic diffeomorphism f to have non-hyperbolic
homoclinic classes such that all saddles have the same s-index. For homoclinic
classes of diffeomorphisms in FT1(M) containing saddles of different indices,
Theorem 1 implies that there is an ergodic non-hyperbolic measure whose sup-
port is the whole homoclinic class.

Finally, we state a refinement of Theorem 1 about the zero Lyapunov expo-
nents of the non-hyperbolic measure. Consider a homoclinic class H(f) of f ,
its s-index (variation) interval is the interval s-ind(H(f)) = [i, j], where i and
j are the minimum and the maximum of the s-indices of the periodic points in
H(f). The homoclinic class H(f) has index variation if i < j.

Corollary 2. There is a residual subset R of Diff 1(M) such that for every
diffeomorphism f ∈ FT 1(M)∩R, every homoclinic class H(f) of f with s-index
variation interval [i, j], and every k ∈ [i, j) there is an ergodic measure µk

H(f)

whose support is the whole homoclinic class H(f) such that its k-th Lyapunov
exponent χk(µk

H(f)) is zero.

Indeed, fix k ∈ [i, j). Theorem 1.1 in [22] claims that if H(f) is a homoclinic
class such that k, k + 1 belong to the index interval s-ind(H(f)) and there is no
dominated splitting defined over H(f) of the form E ⊕F ⊕G with dim(E) = k
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and dim(F ) = 1, then there is a diffeomorphism g arbitrarily C1-close to f
having a homoclinic tangency associated to a saddle of s-index k. Therefore,
since f ∈ FT1(M), the homoclinic class H(f) has a dominated splitting of the
form E ⊕ F ⊕ G, where dim(E) = k and F is one-dimensional. On the other
hand, by [2], as f is a C1-generic diffeomorphism the homoclinic class H(f)
contains saddles of s-indices k, k + 1 ∈ [i, j]. Now we can apply Theorem 1 to
get Corollary 2.

We close this introduction discussing the special case of robustly non-hy-
perbolic and transitive diffeomorphisms. We point out that the proof of our
results makes a systematic use of the machinery recently developed about the
dynamics and generic properties of homoclinic classes of C1 diffeomorphisms,
see Section 3 for details. Therefore our results are formulated for C1-generic
diffeomorphisms.

On the other hand, the setting of robustly transitive and non-hyperbolic
diffeomorphisms is a natural framework for considering Question 1 for open
sets of non-hyperbolic diffeomorphisms. Moreover, in a recent paper, Nalsky
gave examples of open sets of diffeomorphisms exhibiting non-hyperbolic ergodic
measures supported on the whole homoclinic classes, [28]. In his case, one
essentially has a skew product over a hyperbolic diffeomorphism in a base and
a circle as a fiber. This example improves the construction in [21] mentioned
before. Motivated by these results we want to formulate the partial case of the
Conjecture 1 that looks more approachable:

Conjecture 2. Let M be a closed manifold with dim(M) ≥ 3. Consider an open
subset T (M) of Diff 1(M) consisting of non-hyperbolic transitive diffemorphisms
f such that there is a Df -invariant dominated splitting TM = E⊕F ⊕G, where
F has dimension one and is non-hyperbolic. Then there is an open and dense
subset N (M) of T (M) consisting of diffeomorphisms f having a non-hyperbolic
ergodic measure µf with full support, supp µf = M .

Notice that the approach used in this paper cannot be used straightforwardly
to settle this conjecture. Indeed, our construction involves measures supported
on periodic orbits, and therefore periodic orbits are dense in the support of the
measure that we obtain. It is an open question whether periodic orbits are
dense in a nonwandering set for an open and dense subset of the set of robustly
transitive diffeomorphisms; C1-Closing Lemma [32] implies this property only
for a residual set of C1-diffeomorphisms.
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This paper is organized as follows. In Section 2 we develop the idea initially
suggested by Ilyashenko in [21] for constructing ergodic invariant measures as
limit of measures supported on periodic orbits. In Section 3 we state properties
of homoclinic classes of C1-generic diffeomorphisms and recall results about
heterodimensional cycles. Finally, in Section 4 we construct a collection of
atomic measures supported on periodic orbits whose limit is a non-hyperbolic
ergodic measure with full support, thus proving our main result.
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2 Non-hyperbolic ergodic measures as limits of

atomic measures

The approach suggested in [21] allows to construct non-hyperbolic ergodic in-
variant measures as limits of measures supported on special sequences of peri-
odic points. Here we show that the support of the limit measure constructed in
this way is a “topological limit” of the sequence of periodic points, see Propo-
sition 2.7 for details.

2.1 Ergodicity, invariant direction fields, and Lyapunov
exponents

Consider a diffeomorphism f : M → M and a closed invariant set ∆ ⊂ M .
Assume that there is a Df -invariant continuous direction field E = (Ex)x∈∆ in
∆. Then for every invariant measure µ whose support is contained in ∆ one of
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the Lyapunov exponents of µ is associated to E (denote it by χE). Namely, for
µ-a.e. x ∈ M and for every non-zero vector v ∈ Ex ⊂ TxM ,

lim
n→∞

1

n
log |Dfn(v)| = χE(µ).

In this section, by convergence of a sequence of measures we mean ∗-weak
convergence: µn converges to µ, if for any continuous function ϕ : M → R it
holds ∫

ϕ dµn →

∫
ϕ dµ, as n → ∞.

To obtain non-hyperbolic measures we will use the following statement.

Lemma 2.1 ([15], Lemma 2.1, or [21], Lemma 1). Let diffeomorphism f : M →
M have an invariant continuous direction field E in an f -invariant closed set
∆ ⊂ M . Let µn and µ be ergodic probability measures with supports in ∆, and
µn → µ as n → ∞. Then χE(µn) → χE(µ).

2.2 Sufficient conditions for ergodicity and convergence

In this section we state an improved version of Lemma 2 from [21]. We need
the following definition.

Definition 2.2 (n-measure). Let G be a continuous map of a metric compact
space Q into itself. A n-measure of the point x0 is an atomic measure uniformly
distributed on n subsequent iterations of the point x0 under the map G:

νn(x0) =
1

n

n−1∑

i=0

δGi(x0),

where δx is δ-measure supported at point x.

Lemma 2.3. Let {Xn} be a sequence of periodic orbits with increasing periods
π(Xn) of a continuous map G of a compact metric space Q into itself. For each
n, let µn be the probability atomic measure uniformly distributed on the orbit
Xn.

Assume that for every ε > 0 and every m ∈ N there exits a subset X̃m,ε ⊂ Xm

such that the following holds. For each continuous function ϕ on Q there exists
N = N(ε, ϕ) ∈ N such that for all m > N the following conditions are satisfied:
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1. µm(X̃m,ε) =
#X̃m,ε

#Xm

> 1 − ε (#X the cardinality of the finite set X) and

2. for any n, such that m > n ≥ N , and for all x ∈ X̃m,ε it holds

∣∣∣∣
∫

ϕ dνπ(Xn)(x) −

∫
ϕ dµn

∣∣∣∣ < ε.

Then the sequence of atomic measures {µn} has a limit, and the limit measure
is ergodic.

Proof. Lemma 2 from [21] claims that under conditions of Lemma 2.3 every
limit point µ of the sequence {µn} is an ergodic measure. Therefore we just
need to show that the sequence of measures {µn} has a ∗-weak limit. In order
to do that it is enough to show that for any continuous function ϕ on Q the
sequence

{∫
ϕdµn

}
is Cauchy and thus converges. Indeed, since {µn} has a

convergent subsequence, µnk
→ µ as k → ∞, this implies that

∫
ϕdµn →

∫
ϕdµ

and therefore µn → µ as n → ∞.
Fix a continuous function ϕ on Q. It is enough to show that the sequence{∫
ϕdµn

}
is Cauchy. Since Q is compact, ϕ is bounded, |ϕ| < M for some

M > 0. Fix small ε > 0 and consider the sets X̃m,ε ⊂ Xm such that for all m >
N = N(ε, ϕ) properties (1) and (2) hold. Now, for a given m > n > N(ε, ϕ),
we have

∑

x∈Xm

∫
ϕdνπ(Xn)(x) =

∑

x∈Xm


 1

π(Xn)

π(Xn)−1∑

i=0

ϕ(Gi(x))


 =

=
1

π(Xn)

∑

x∈Xm

π(Xn)−1∑

i=0

ϕ(Gi(x)) =
1

π(Xn)

∑

x∈Xm

π(Xn) ϕ(x) =

=
∑

x∈Xm

ϕ(x) = π(Xm)

∫
ϕdµm.
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Therefore we can estimate

∣∣∫ ϕdµm −
∫

ϕdµn

∣∣ =
1

π(Xm)

∣∣π(Xm)
∫

ϕdµm − π(Xm)
∫

ϕdµn

∣∣ =

=
1

π(Xm)

∣∣∣∣∣
∑

x∈Xm

∫
ϕdνπ(Xn)(x) − π(Xm)

∫
ϕdµn

∣∣∣∣∣ ≤

≤
1

π(Xm)

∣∣∣∣∣∣

∑

x∈ eXm,ε

(∫
ϕdνπ(Xn)(x) −

∫
ϕdµn

)∣∣∣∣∣∣
+

+
1

π(Xm)

∣∣∣∣∣∣

∑

x 6∈ eXm,ε

(∫
ϕdνπ(Xn)(x) −

∫
ϕdµn

)∣∣∣∣∣∣
.

Finally, from condition (2) in the lemma, |ϕ| < M , and condition (1), we have

∣∣∣∣
∫

ϕdµm −

∫
ϕdµn

∣∣∣∣ ≤
1

π(Xm)

(
π(Xm)ε + 2 M π(Xm)ε

)
= (1 + 2 M)ε.

So the sequence
{∫

ϕdµn

}
is Cauchy, and Lemma 2.3 is proved.

2.3 Sufficient conditions for existence of an invariant non-

hyperbolic measure with large support

In this section, we state an improved version of Proposition 2.5 from [15], where
we add a description of the support of the resulting limit measure. We need the
following definition.

Definition 2.4 (Good approximations). A periodic orbit Y of a map G of a
compact metric space Q into itself is a (γ, κ)-good approximation of the periodic
orbit X of G if the following holds.

• There exists a subset Γ of Y and a projection ρ : Γ → X such that

dist(Gj(y), Gj(ρ(y))) < γ,

for every y ∈ Γ and every j = 0, 1, . . . , π(X) − 1;
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•
#Γ

#Y
≥ κ;

• #ρ−1(x) is the same for all x ∈ X.

Lemma 2.5. Let {Xn} be a sequence of periodic orbits with increasing periods
π(Xn) of a continuous map G of a compact metric space Q into itself. For each
n, let µn be the probability atomic measure uniformly distributed on the orbit
Xn.

Assume that there are sequences of numbers {γn}n∈N, γn > 0, and {κn}n∈N,
κn ∈ (0, 1], such that

1. for each n ∈ N the orbit Xn+1 is a (γn, κn)-good approximation of Xn;

2.
∑∞

n=1 γn < ∞;

3.
∏∞

n=1 κn ∈ (0, 1].

Then the sequence of atomic measures {µn} has a limit µ. The limit measure µ
is ergodic, and

supp µ =
∞⋂

k=1

( ∞⋃

l=k

Xl

)
≡ X.

In other words, supp µ is a topological limit of the sequence of orbits Xn,

supp µ = {y ∈ Q | ∃mi → ∞ and xi ∈ Xmi
such that lim

i→∞
xi = y}.

Proof. Let us check first that the conditions of the Lemma 2.3 are satisfied by
the sequence of orbits Xn.

Take arbitrary ε > 0 and continuous map ϕ : Q → R. By assumption 1),

for orbits {Xn} a sequence of subsets X̃n ⊂ Xn and a sequence of projections

ρn : X̃n+1 → Xn are defined such that:

∞∏

n=1

#X̃n+1

#Xn+1

≥
∞∏

n=1

κn > 0. (1)

Choose δ = δ(ε, ϕ) such that:

ωδ(ϕ) := sup
dist(x,y)<δ

|ϕ(x) − ϕ(y)| < ε.
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By assumption 2), we have
∑∞

n=1 γn < ∞. Choose N = N(ε, ϕ) such that
the following holds:

∞∑

N

γk < δ(ε, ϕ) and

∞∏

N

κk > 1 − ε. (2)

Since the number of points in a pre-image for projections ρn does not depend
on a point in the image, a set X̃m,ε ⊂ Xm where the total projection

ρm,N = ρm−1 ◦ · · · ◦ ρN : X̃m,ε → XN

is defined contains most of the orbit Xm:

#X̃m,ε

#Xm

≥
m−1∏

k=N

κk ≥
∞∏

N

κk > 1 − ε.

This implies 1) in Lemma 2.3.
Take arbitrary m and n with m > n > N(ε, ϕ). By construction, on the set

X̃m,ε the total projection ρm,n = ρm−1 ◦ · · · ◦ ρn is defined and for every point x

from the set X̃m,ε ⊂ Xm from the first part of equation (2) we have

dist(Gj(x), Gj(ρm, n(x))) < δ(ε, ϕ), for all j = 0, 1, . . . , π(Xn) − 1. (3)

Hence for x ∈ X̃m,ε we have:
∣∣∣∣
∫

ϕ dνπ(Xn)(x) −

∫
ϕ dµn

∣∣∣∣ < ωδ(ϕ) < ε.

Thus all conditions of Lemma 2.3 are verified. Therefore the sequence {µn} has
a limit µ, and the limit measure µ is ergodic.

Now we need the following lemma. Denote by Uδ(x) the ball of radius δ
centered at x.

Lemma 2.6. Set rn =
∞∑

k=n

γk. For every point x ∈ Xn one has µ(Urn
(x)) > 0.

Proof. Take any point x ∈ Xn. Notice that in its γn–neighborhood there are at

least
# eXn+1,ε

π(Xn)
points of the orbit of Xn+1, where

#X̃n+1,ε

π(Xn)
=

#X̃n+1,ε

π(Xn+1)

π(Xn+1)

π(Xn)
≥ κn

π(Xn+1)

π(Xn)
≡ κ̄n. (4)

12



Therefore,

µn+1(Uγn
(x)) ≥

κn
π(Xn+1)
π(Xn)

π(Xn+1)
= κn

1

π(Xn)
= κn µn({x}). (5)

In the neighborhood Uγn
(x) there are p different points x1, . . . , xp of the orbit

of Xn+1, where p ≥ κ̄n. Notice that, by equation (4), for each of these points
xi the pre-image ρ−1

n+2(xi) consists of at least

#X̃n+2,ε

π(Xn+1)
≥ κn+1

π(Xn+2)

π(Xn+1)

points. The sets ρ−1
n+2(xi) and ρ−1

n+2(xj) are disjoint for i 6= j. Therefore we have

µn+2(Uγn+1+γn
(x)) ≥

[
p κn+1

π(Xn+2)

π(Xn+1)

]
1

π(Xn+2)
≥

≥

(
κn

π(Xn+1)

π(Xn)

)
κn+1

1

π(Xn+1)
=

κn κn+1

π(Xn)
=

= κn κn+1 µn({x}).

Thus arguing inductively we have, for every x ∈ Xn,

µn+ℓ(Uγn+ℓ+···+γn+1+γn
(x)) ≥ (κn+ℓ · · · κn+1 κn) µn({x}).

Taking a limit and taking into account the condition 3 in Lemma 2.5, we have:

µ(Urn
(x)) ≥

( ∞∏

k=n

κk

)
µn({x}) > 0, where rn =

∞∑

k=n

γk.

Therefore, Lemma 2.6 holds.

Now let us show that the support of µ is the topological limit X of the
sequence of orbits Xn. It is a general fact that for any convergent sequence
of measures the support of the limit is a subset of the topological limit of the
sequence of supports, therefore supp µ ⊆ X. We need to show that in our case
we also have X ⊆ supp µ.
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Take any point z ∈ X. It is enough to show that arbitrary small ε > 0 one
has µ(Uε(z)) > 0. Choose n′ ∈ N large enough to guarantee that

Xn′ ∩ Uε/2(z) 6= ∅ and rn′ < ε/2.

Take any z′ ∈ Xn′ ∩ Uε/2(z). We have Uε(z) ⊃ Urn′
(z′), and due to Lemma 2.6

µ(Urn′
(z′)) > 0. Hence µ(Uε(z)) > 0, and therefore z ∈ supp µ.

This completes the proof of Lemma 2.5.

Proposition 2.7. Assume that a diffeomorphism f : M → M has the following
properties:

1) there exists an f -invariant closed set ∆ ⊂ M such that f has an invariant
continuous direction field E in ∆;

2) there exists a sequence of periodic orbits {Xn}∞n=1, Xn ⊂ ∆, of f whose
periods π(Xn) tend to infinity as n → ∞.

Denote by χE(X) the Lyapunov exponent along the periodic orbit X with respect
to the invariant direction field E.

3) There exists a sequence of numbers {γn}∞n=1, γn > 0, and a constant C > 0
such that for each n the orbit Xn+1 is a (γn, 1−C |χE(Xn)|)-good approx-
imation of the orbit Xn;

4) let dn be the minimal distance between the points of the orbit Xn, then

γn <
min1≤i≤n di

3 · 2n
;

5) there exits a constant ξ ∈ (0, 1) such that for every n

|χE(Xn+1)| < ξ |χE(Xn)|.

Then the sequence of atomic measures µn supported on periodic orbits Xn has a
(∗-weak) limit µ. The measure µ is a non-hyperbolic ergodic invariant measure
of f , and supp µ is uncountable. Moreover, supp µ is a topological limit of the
sequence of orbits Xn, i.e.

supp µ =

∞⋂

k=1

( ∞⋃

l=k

Xl

)
.
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Proof. Assumptions 1)–5) of Proposition 2.7 imply that conditions of Lemma
2.5 are satisfied. Therefore there exists a limit limn→∞ µn = µ, the measure
µ is an ergodic invariant measure of f , and supp µ is a topological limit of
the sequence of orbits Xn. Due to Lemma 2.1 and property 5), measure µ
is non-hyperbolic. Finally, Proposition 2.5 from [15] implies that supp µ is
uncountable.

3 Homoclinic classes: C1-generic properties and

generation of cycles

In this section we recall some known results on homoclinic classes and heterodi-
mensional cycles that will be used later in our construction.

3.1 Generic properties

Here we state properties of homoclinic classes of C1-generic diffeomorphisms.
There is a residual subset G of Diff 1(M) such that every diffeomorphism f ∈ G
satisfies properties R1)–R5) below.

R1) Every homoclinic class of f ∈ G depends continuously on f in Hausdorff
metric, see [13]. Moreover, if the homoclinic class contains saddles of
indices a and b, a < b, it also contains saddles of index c, for every
c ∈ (a, b) ∩ N. See [2, Theorem 1].

Consider a hyperbolic periodic point Pf of a diffeomorphism f . It is well
known that there are open neighborhoods U of Pf in the manifold and U of f
in Diff 1(M) such that every g ∈ U has a unique hyperbolic periodic point Pg of
the same period as Pf in U . The point Pg is called the continuation of Pf .

Recall that two saddles Pf and Qf are homoclinically related if their invari-
ant manifolds W s(Pf) and W u(Qf) and W u(Pf) and W s(Qf) have non-empty
transverse intersections. In this case, the homoclinic classes of Pf and of Qf

coincide and the saddles have the same index. Moreover, the continuations Pg

and Qg are also homoclinically related for all g close to f .

Definition 3.1 (Persistently linked saddles). Consider a pair of hyperbolic sad-
dles Pf and Qf whose continuations are defined for every f in an open set U
of Diff 1(M). The saddles Pf and Qf are persistently linked in U if there is a
residual subset R of U such that H(Pf , f) = H(Qf , f) for all f ∈ U ∩R.
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R2) Given any f ∈ G and any pair of saddles Pf and Qf of f , there is a
neighborhood Uf of f such that either Pf and Qf are persistently linked
in Uf or H(Pg, g) ∩ H(Qg, g) = ∅ for all g ∈ Uf ∩ G. Moreover, If the
saddles Pf and Qf have the same index they are homoclinically related.
See [2, Lemma 2.1].

Definition 3.2 (Saddle with real multipliers). Let P be a periodic point of
period π(P ) of a diffeomorphism f . We say that P has real multipliers if ev-
ery eigenvalue λ of Dfπ(P )(P ) is real and has multiplicity one, and two dif-
ferent eigenvalues of Dfπ(P )(P ) have different absolute values. We order the
eigenvalues of Dfπ(P )(P ) in increasing ordering according their absolute values
|λ1(P )| < · · · < |λm(P )| and say that λk(P ) is the k-th multiplier of P .

Definition 3.3 (s- and u-index). Let P be a hyperbolic saddle. By s-index of P
we mean the number of multipliers of P with absolute value less than one, and
by u-index the number of multipliers of P with absolute value greater than one.

Let P be a saddle with real multipliers, and suppose that s-index(P ) = t+1.
Consider the bundle Ess ⊂ TPM corresponding to the first t contracting eigen-
values of P and the strong stable manifold W ss(P ) of P (the only f -invariant
manifold of dimension t tangent to the strong stable direction Ess).

Definition 3.4 (s- and u-biaccumulation). A hyperbolic saddle P with real
multipliers is s-biaccumulated (by its homoclinic points) if both connected com-
ponents of W s

loc(P ) \W ss
loc(P ) contain transverse homoclinic points of P . Define

also u-biaccumulation by homoclinic points in a similar way.

Note that s- and u-biaccumulation are open properties.

Given a saddle P , we denote by PerR(H(P, f)) the saddles homoclinically
related to P having real multipliers. Clearly, PerR(H(P, f)) ⊂ H(P, f).

R3) For every diffeomorphism f ∈ G and every saddle P of f whose homoclinic
class is non-trivial the set PerR(H(P, f)) is dense in the whole homoclinic
class H(P, f). Moreover, the saddles from PerR(H(P, f)) which are s- (or
u-) biaccumulated are also dense in H(P, f). See [2, Proposition 2.3] and
[15, Lemma 3.4].

R4) Consider f ∈ G and a saddle P of f whose homoclinic class is non-trivial.
For every ǫ > 0 and every k = 1, . . . ,m, one has that

(
{S ∈ PerR(H(P, f)) : |χk(S) − χk(P )| < ǫ}

)
= H(P, f).
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Assume now that χk(P ) < 0 and suppose that H(P, f) contains a saddle
Q with χk(Q) > 0. Then one has that

(
{S ∈ PerR(H(P, f)) : χk(S) ∈ (−ǫ, 0)}

)
= H(P, f).

Moreover, we can additionally assume that the dense subsets of H(P, f)
above consist of saddles with the biaccumulation properties. For details
see [2, 7, 15].

R5) We will actually need a slightly stronger property.

Lemma 3.5. Consider any f ∈ G and any hyperbolic saddle Pf whose
homoclinic class is non-trivial. For every ǫ > 0 and k = 1, . . . ,m, the
homoclinic class H(Pf , f) of f contains a saddle Yf ∈ H(Pf , f) with real
multipliers such that Yf is homoclinically related to Pf , its orbit is ǫ-dense
in the homoclinic class H(Pf , f), and the Lyapunov exponent χk(Yf) is
ǫ-close to χk(Pf).

Proof. Indeed, for a given ε > 0, by R4) there exists a finite collection of
periodic saddles {Pi}i=1,2,...,m which is ε/2 -dense in H(Pf , f), and their
Lyapunov exponents χk(Pi) are ε-close to χk(Pf). Moreover, as f ∈ G,
by R2) these saddles are homoclinically related. This implies that there
exists a locally maximal transitive hyperbolic set Λf with Pi ∈ Λf , for
all i = 1, . . . , m. Then there is a periodic saddle Yf ∈ Λf that spends
an arbitrary large portion of time in an arbitrary small neighborhood of
the initial collection of saddles, and is ε/2-dense in Λf . This implies that
the orbit of Yf is ε-dense in H(Pf , f) and its Lyapunov exponent χk(Yf)
is close to the Lyapunov exponent χk(Pf ), completing the proof of the
lemma.

3.2 Heterodimensional cycles

In this section, we state results that allow us to generate heterodimesional cycles
for saddles in a non-hyperbolic homoclinic classes. Roughly speaking, we need
to be able to create a cycle associated with a given pair of homoclinically linked
saddles of different indices (Proposition 3.6); to produce a locally dense set
of diffeomorphisms with these type of cycles (Proposition 3.7); and, finally,
to use these cycles to generate periodic saddles with some special properties
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(Proposition 3.8) that will allow to use Proposition 2.7 later to obtain non-
hyperbolic ergodic measures with large support.

The following result, which is a consequence of the Connecting Lemma in
[23], can be found in [15, Proposition 3.5]. Recall that two saddles P and Q of
different indices have a heterodimensional cycle if its invariant manifolds meet
cyclically, W s(P )∩W u(Q) 6= ∅ and W u(P )∩W s(Q) 6= ∅. The cycle has coindex
one if s-index(P ) = s-indexQ ± 1.

Proposition 3.6. Let U be an open set of Diff 1(M) such that there are saddles
Pf and Qf (depending continuously on f ∈ U) with consecutive indices which
are persistently linked in U . Then there is a dense subset H of U such that every
diffeomorphism f ∈ H has a coindex one heterodimensional cycle associated to
saddles Af ∈ PerR(H(Pf , f)) and Bf ∈ PerR(H(Qf , f)).

The following statements are straightforward reformulations of Propositions
4.3 and 4.5 from [15] better suited for our case.

Proposition 3.7. Let f have a cycle associated to saddles Af and Bf such that

• Af and Bf have real multipliers and s-index (Af) = s-index (Bf) + 1;

• Af is s-biaccumulated and Bf is u-biaccumulated;

Then arbitrarily C1-close to f there are an open set E ⊂ Diff 1(M) and dense
subset D ⊂ E such that every g ∈ D has a cycle associated with Ag and Bg.

Proposition 3.8. ([15, Proposition 4.5]) Let f be a diffeomorphism with a
heterodimensional cycle associated to saddles Af and Bf such that

(i) the saddles Af and Bf have real multipliers;

(ii) s-index(Af) = i + 1 and s-index(Bf) = i;

(iii) Af is s-biaccumulated, and Bf is u-biaccumulated.

Fix neighborhoods UB of the orbit of Bf and UA of the orbit of Af . Then
there are sequences of natural numbers ℓk, mk, that tend to infinity as k → ∞,
and a sequence of diffeomorphisms fk, fk → f as k → ∞, such that fk coincides
with f along the orbits of Af and Bf , and has a hyperbolic saddle Rk having
real multipliers with the following properties:
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(1) the orbit of the saddle Rk spends a fixed number t(a,b) (independent of k)
of iterates to go from UB to UA, then it remains ℓk π(Af ) iterates in UA,
then it takes a fixed number of iterates t(b,a) (independent of k) to go from
UA to UB, and finally it remains mk π(Bf ) iterates in UB. In particular,
there is a constant t ∈ N independent of k such that the period of Rk is
π(Rk) = mk π(Bf) + ℓk π(Af ) + t;

(2) there is a constant Θ > 0 independent of k such that the central multiplier
of Rk satisfies Θ−1 < |λi+1(Rk)| < Θ.

Suppose also that |λi+1(Af)| ∈
(

1√
2
, 1
)

1. Then

(3) Rk has the same index as Bf and is homoclinically related to Bf ;

(4) W s(Rk) intersects W uu(Rk), and W uu(Rk) intersects W s(Bf). Moreover,
these intersections are quasi-transverse;

(5) there is a heterodimensional cycle associated to Rk and Af .

Remark 3.9. Notice that the condition (1) implies that there exists a sequence
δk → 0+ such that

O(Af),O(Bf) ⊆ Bδk
(O(Rk)) .

Here O(X) denotes the full orbit of the point X.

Remark 3.10. In [15] we introduced V -related cycles in order to guarantee that
all of the sets we consider are in the domain where a central direction field is
defined. Here this property is one of the assumptions of the main result, so we
do not need to focus on V -related cycles. Propositions 3.7 and 3.8 above are
therefore weaker versions of Propositions 4.3 and 4.5 from [15].

4 Main construction: tree of periodic points

and limit measures

In this section we use the results of previous sections to complete the proof of
Theorem 1. Let G be the residual set of Diff 1(M) described in Section 3.1. The
statement below is a local version of Theorem 1.

1In [15] here just assumed that the (i+1)-th multiplier λi+1(Af ) of Af is close to one. To
be more accurate, here we replaced it by the condition that we actually needed for the proof,
see equation (8) in [15].
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Theorem 2. Let f ∈ G have a homoclinic class H(f) of f such that

• H(f) has a dominated splitting of the form TH(f)M = E ⊕ F ⊕ G, where
F has dimension one,

• H(f) = H(Pf , f) = H(Qf , f), where the saddles Pf and Qf have s-indices
dim(E ⊕ F ) = dim(E) + 1 and dim(E).

Then arbitrarily C1-close to f there exists a C1-open set Z ⊂ Diff 1(M) and
a residual subset R ⊂ Z such that every g ∈ R has a non-hyperbolic ergodic
invariant measure whose support is the whole homoclinic class H(Pg, g).

As in [15] (see also [2]), standard genericity arguments imply that Theorem 1
follows from Theorem 2.

Before we continue, let us remind that existence of the dominated splitting
is preserved by small perturbations.

Lemma 4.1 (Dominated splittings, Appendix B.1.1 in [10]). Assume that the
homoclinic class H(Pf , f) has a dominated splitting TH(Pf ,f)M = Ef ⊕Ff ⊕Gf .
There are neighborhoods V of H(Pf , f) and Uf of f such that for every g ∈ Uf ,
the maximal invariant set Λg(V ) has a dominated splitting TΛg(V )M = Eg⊕Fg⊕
Gg, where dimKf = dimKg, K = E, F, G. With a slight abuse of notation, we
will omit the dependence on g of this splitting.

4.1 Construction of the sequences of periodic orbits

Consider a homoclinic class H(f) = H(Pf , f) = H(Qf , f) of f ∈ G that satisfy
the conditions of Theorem 2.

The genericity hypotheses R2)–R3) imply that the homoclinic class H(f)
contains two saddles Af and Bf with real multipliers such that

s -index(Af) = s -index(Pf ), s -index(Bf) = s -index(Qf),

and
H(f) = H(Af , f) = H(Bf , f) = H(Pf , f) = H(Qf , f).

The homoclinic class H(f) has a splitting E⊕F⊕G, where F is one-dimensional.
We can assume that the saddle Af is s-biaccumulated, the saddle Bf is u-
biaccumulated, and that the central multiplier of Af is close to one (it is enough
to have |λF (Af)| ∈ (0.9, 1)), see generic conditions R3)–R4).
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Recall that χF (Af) denotes the central Lyapunov exponent of saddle Af

corresponding to the central direction F . Fix a constant C such that

C >
32

ν
, where ν = |χF (Af , f)|. (6)

Lemma 4.2. Let f satisfy the conditions of Theorem 2 and constants C, ν > 0
be as in (6). Given ǫ > 0, arbitrary close to f there exists an open set Z ⊂
Diff 1(M) with the following properties.

1) For every g ∈ Z ∩ G

H(f) ⊂ Bǫ/2(H(Pg, g)), H(Pg, g) ⊂ Bǫ/2(H(f)).

2) For every g ∈ Z ∩ G, we have

• H(Pg, g) = H(Qg, g) = H(Ag, g) = H(Bg, g),

• there is a dominated splitting (with one-dimensional central direction)
on H(g) = H(Pg, g).

3) For each g ∈ Z there is a saddle Yg ⊂ H(Pg, g) with real multipliers such
that the following holds.

• the orbit of Yg is ǫ-dense in H(g),

• Yg and Pg are homoclinically related, hence H(Yg, g) = H(Pg, g),

• χF
Yg

∈ [−2 ν,−ν/2],

• the saddle Yg is s-biaccumulated.

4) There is a dense in Z countable subset D ⊂ Z such that every φ ∈ D has
a cycle associated with the saddles Yφ and Bφ.

Proof. Since f ∈ G, by property R1), continuous dependence of homoclinic
classes of diffeomorphisms in G, there is an open set W ⊂ Diff1(M), f ∈ W ,
such that for every g ∈ W ∩ G we have

H(f) ⊂ Bǫ/2(H(Pg, g)), H(Pg, g) ⊂ Bǫ/2(H(f)),

obtaining property 1).
By Lemma 4.1 there is a dominated splitting (with one-dimensional central

direction) on H(g) = H(Pg, g) which is a continuation of E ⊕ F ⊕ G. In
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particular, such a splitting also has one dimensional central direction. Slightly
abusing the notation, we will continue to denote this splitting by E ⊕F ⊕G. If
W is small enough then for every g ∈ W ∩ G, we have H(Pg, g) = H(Qg, g) =
H(Ag, g) = H(Bg, g), see R2). This gives 2).

Due to R5) there is g arbitrary C1 close to f and a saddle Yg ⊂ H(Pg, g) with
real multipliers such that its orbit is ǫ/3-dense in H(g), H(Yg, g) = H(Pg, g),
χF

Yg
∈ [−2 ν,−ν/2], and which is s-biaccumulated, hence we have 3).

Finally, Proposition 3.6 implies that C1-arbitrarily close to g there is h with
a cycle corresponding to the saddles Yh and Bh. Therefore, by Proposition 3.7,
there is an open set Z ⊂ W and a dense in Z countable subset D ⊂ Z such that
every φ ∈ D has a cycle associated with the saddles Yφ and Bφ. This completes
the proof of Lemma 4.2.

Next proposition can be considered as an improved version of Proposition 5.3
from [15]. Notice that properties Z3) and Z4) allow to “spread” the constructed
sequence of periodic orbits around the whole homoclinic class.

Proposition 4.3. Let f satisfy the conditions of Theorem 2 and constants
C, ν > 0 be as in (6). Fix a decreasing sequence {ǫN}N∈N of positive numbers,
ǫN → 0+ as N → ∞. Arbitrarily C1-close to f there exists a nested sequence
of open sets

. . .ZN ⊂ ZN−1 ⊂ . . .Z2 ⊂ Z1 ⊂ Diff 1(M)

such that the following holds.

Z1) A set ZN is a dense open subset of ZN−1.

Z2) Every diffeomorphism g ∈ ZN has a finite sequence of periodic saddles
homoclinically related to Bg (thus of the same index as Bg)

{Q1,g, Q2,g, . . . , QN,g} ⊂ H(Bg, g)

having real multipliers, satisfying the u-biaccumulation property, and of
growing periods, π(Bg) = π(Q1,g) < . . . < π(QN,g). Moreover, saddles
{Q1,g, Q2,g, . . . , QN,g} depend continuously on g when g varies over ZN .

Z3) For any N ∈ N there exists a countable dense subset DN ⊂ ZN such that
every g ∈ DN has a saddle YN,g depending continuously on g such that

• the g-orbit of YN,g is ǫN+1-dense in H(Bg, g),
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• χF (YN,g) ∈ [−2 ν,−ν/2],

• there is a heterodimensional cycle associated to the saddles YN,g and
QN,g.

Z4) There is a sequence of locally constant functions γN : ZN → (0, +∞)
such that for any N ∈ N and any g ∈ ZN+1 the orbit of QN+1,g is a
(γN(g), 1 − C |χF (QN,g)|)-good approximation of the orbit of QN,g (recall
Definition 2.4), where C is the constant in (6). Moreover,

BǫN+1
(O(QN+1,g)) ⊃ O(YN,g).

Z5) Take any g ∈ ZN . Let dk, 1 ≤ k ≤ N , be the minimal distance between
the points of the g-orbit of Qk,g. Then

γN(g) <
min1≤k≤N dk

3 · 2N
.

Z6) For each N ∈ N and every g ∈ ZN+1

|χF (QN+1,g)| <
1

2
|χF (QN,g)|.

Proof. We prove Proposition 4.3 by induction.
As a set Z1 we take the set Z from Lemma 4.2 (where we take ǫ = ǫ2).

Taking Q1,g = Bg, D1 = D, and Y1,g = Yg, we see that properties Z2) and Z3)
for Z1 are satisfied. This form the base of induction. Notice that here we do
not need to check the properties Z4) - Z6).

Now assume that the sets Z1 ⊃ Z2 ⊃ . . .ZN together with periodic orbits
{Q1,g, . . .QN,g}, {Y1,g, . . . YN,g}, functions γi : Zi → (0, +∞), and sets Di are
constructed, i = 1, . . . , N . Let us construct the set ZN+1 ⊂ ZN .

Notice that it is enough to construct an open dense subset of each connected
component of ZN (together with periodic orbits QN+1,g, YN+1,g, function γN+1,
and a dense subset DN+1) that satisfies conditions Z2) - Z6). Take one of the
connected components of the set ZN , denote it by Z∗.

Let us enumerate diffeomorphisms from DN ∩ Z∗ = {gi}i∈N. Take one of
these diffeomorphisms, say gi ∈ DN ∩ Z∗.

Proposition 3.8 (applied to the saddles QN,gi
and YN,gi

) allows to obtain a
sequence of diffeomorphisms gik, gik → gi as k → ∞, such that each diffeo-
morphism gik has a periodic saddle Sik with real multipliers (denoted by Rk in
Proposition 3.8), having the following properties:
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S1) the saddle Sik is homoclinically related to QN,gik
, thus has the same index

as Bgi
;

S2) for some constant Θ that does not depend on k and for each k ∈ N we
have 1 < |λF (Sik)| < Θ;

S3) the map gik has a heterodimensional cycle associated to Sik and YN,gik
;

S4) take a real number γN = γN(Z∗) > 0 small enough (the choice of γN will
be clear from the construction below) and γN -neighborhoods UO(YN,gi

) and
UO(QN,gi

) of the orbits of YN,gi
and QN,gi

, and sequences of natural numbers
ℓk, mk that tend to infinity as k → ∞, such that under the iterates of gik it
takes to the saddle Sik a fixed number of iterates (independent of k) to go
from UO(YN,gi

) to UO(QN,gi
), then it remains ℓk π(YN,gi

) iterates in UO(YN,gi
),

then it needs a fixed number of iterates to go from UO(YN,gi
) to UO(QN,gi

),
and finally it remains mk π(QN,gi

) iterates in UO(QN,gi
). In particular, there

is a constant t ∈ N independent of k such that

π(Sik) = mk π(QN,gi
) + ℓk π(YN,gi

) + t.

Exactly as in [15], properties (3) and (4) from Proposition 3.8 guarantee that
making an arbitrary small perturbation of gik (preserving properties S1) - S4))
we also have:

S5) the saddle Sik has the u-biaccumulation property.

We need the following quantitative estimates:

Lemma 4.4 (Lemma 5.4 from [15]). For every large k ∈ N the saddles Sik

satisfy:

0 < χF (Sik) <
1

2
χF (QN,gik

), (7)

mk π(QN,gi
)

π(Si,k)
=

mkπ(QN,gi
)

mkπ(QN,gi
) + ℓkπ(YN,gi

) + t
> 1 − CχF (QN,gik

). (8)

Consider now the set

D′ = {gik | Sik satisfies conditions (7), (8), i ≥ 0 and k ≥ 0} ⊂ Z∗.

By construction, the set D′ is a countable dense subset of Z∗. Let us enumerate
the elements of D′ = {hn}n∈N. Let us also denote by QN+1,g(n) the continuation
of the periodic saddle Sik of the map hn ≡ gik. In particular, QN+1,gik

(n) = Sik.
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Now an application of Lemma 3.5 and Proposition 3.7 implies that for each
hn there is an open set Un, which is 1

n
-close to hn, and for each g ∈ Un ∩G there

is a saddle YN+1,g(n) such that

Y1) the saddle YN+1,g(n) is in H(g) = H(Pg, g) and its orbit is ǫN+2-dense in
H(g),

Y2) the saddles QN+1,g(n) and YN+1,g(n) have different indices,

Y3) the Lyapunov exponent χF (YN+1,g(n)) is close to (−ν), and

Y4) there is a dense subset D̃(n) of maps in Un having a heterodimensional
cycle between QN+1,g(n) and YN+1,g(n).

We can take Un small enough and close enough to hn to guarantee that for
every g ∈ Un one has 0 < χF (QN+1,g(n)) < 1

2
χF (QN,g). Indeed, due to (7)

this inequality holds for hn. Since Lyapunov exponents of a hyperbolic saddle
depend continuously on a diffeomorphism, the inequality holds also for all g
sufficiently C1-close to hn.

Let us now define inductively

Z(1) = U1, Z(2) = U2\Z(1), . . . ,Z(n) = Un\Z(n − 1), . . .

and
D(n) = D̃(n) ∩ Z(n), n ∈ N.

Also we set
Z∗

N+1 =
⋃

n∈N

Z(n), D∗
N+1 =

⋃

n∈N

D̃(n).

Besides, for each g ∈ Z(n) we set QN+1,g = QN+1,g(n) and YN+1,g = YN+1,g(n).
Finally, we define ZN+1 and DN+1 as the union of constructed sets Z∗

N+1 and
D∗

N+1 over all connected components of ZN . We claim that the set ZN+1 satisfies
the required properties Z1) - Z6).

• Since the set {hn}n∈N is dense in Z∗ (the chosen connected component of
ZN), the union ∪n∈NUn is dense in Z∗, and hence ∪n∈NZ(n) is also dense
in Z∗, so Z1) holds.

• For each g ∈ Z(n) the saddle QN+1,g(n) is homoclinically related to Bg (re-
call S1)), has real multipliers, u-biaccumulation property, and π(QN,g) <
π(QN+1,g(n)), so Z2) holds.
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• The sets D̃(n) ⊂ Un and the saddles YN+1,g(n) were constructed to satisfy
Z3). More precisely, the estimate of the Lyapunov exponent χF (YN+1,g(n))
follows from the choice of YN+1,g(n) in Y3), the ǫN+2-density of the orbit
of YN+1,g(n) in H(g) follows from Y1), and the existence of the heterodi-
mensional cycle follows from Y4).

• Take g ∈ ZN+1, and denote by Γ the part of the orbit of QN+1,g that
belongs to the neighborhood UQN,g

. Define the projection

ρ : Γ → O(QN,g), ρ(x) = {the point of O(QN,g) nearest to x}.

By construction (recall S4)),

#Γ = mkπ(QN,g) and #(O(QN+1,g)) = mkπ(QN,g) + ℓkπ(YN,g) + t.

Recall that here k and n are related due to the enumeration hn = gik;
notice that in fact integers mk, ℓk, and t depend also on the index i, but our
notations do not reflect this dependence. Now the first part of Z4) follows
from the inequality (8). The second part, BǫN+2

(O(QN+1,g)) ⊃ O(YN,g),
follows from the fact that γN can be chosen arbitrarily small, in particular,
smaller than ǫN+2.

• Condition Z5) is obtained by choosing sufficiently small γN > 0.

• The last property Z6) follows directly from inequality (7).

We completed the step of induction, and, thus, proved Proposition 4.3.

4.2 Infinite sequences of periodic orbits

Here we conclude the proof of Theorem 2 and, therefore, of the main result.

Proposition 4.5. Let f satisfy the conditions of Theorem 2. Arbitrary close
to f there exists an open set Z ⊂ Diff 1(M) such that generic diffeomorphism g
from Z have a sequence of periodic saddles which satisfies the assumptions of
Proposition 2.7, belongs to the homoclinic class H(Pg, g), and the union of their
orbits is dense in the homoclinic class H(Pg, g).

Note that Propositions 4.5 and 2.7 give non-hyperbolic ergodic measures
supported on the whole homoclinic class for generic diffeomorphisms from Z,
and, thus, Theorem 2.
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Proof. Apply Proposition 4.3, and set Z = Z1. Due to Property Z1), for any
N ∈ N the set ZN is an open and dense subset of Z. Therefore the intersection

R = G ∩

(
⋂

N∈N

ZN

)
.

is a residual subset of Z.
Take any g ∈ R. Due to Z2), for the diffeomorphism g ∈ R a sequence of

periodic points
{Bg, Q1,g, Q2,g . . . , QN,g, . . .} ⊂ H(Pg, g)

is well defined. We claim that this sequence satisfies the assumptions of Propo-
sition 2.7.

Indeed, assumption 1) holds since g ∈ G and due to the choice of Z (existence
of a one dimensional center direction for ∆ = H(Pg, g)), and 2) follows from
property Z2). Assumptions 3), 4), and 5) follow from Z4), Z5), and Z6),
respectively.

Finally, since ǫN → 0 as N → ∞, from Z3), Z4) we have that the nonhy-
perbolic ergodic measure given by Proposition 2.7 satisfy

supp(µ) =
⋂

N∈N

(
⋃

K≥N

O(QK,g)

)
= H(Pg, g). (9)

This proves Proposition 4.5.
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