hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features

"non-hiperbolicities"

Lorenzo J. Díaz

PUC-Rio

Brasil-França, IMPA, 2009

イロト イポト イヨト イヨト ニヨー のくべ

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

thanks:

to the Brazil-France Cooperation in Mathematics,

for the long-lasting support....

questions:

- How to characterize the absence of hyperbolicity?
- What structures cannot exist in the hyperbolic case but must be present in its complement?

questions:

- How to characterize the absence of hyperbolicity?
- What structures cannot exist in the hyperbolic case but must be present in its complement?

questions:

- How to characterize the absence of hyperbolicity?
- What structures cannot exist in the hyperbolic case but must be present in its complement?

hyperbolicity ••••	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
horseshoes				

hyperbolic systems

horseshoes:

スロット 白マ マルビット 山田 くうえる

hyperbolicity ●000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
horseshoes				

hyperbolic systems

horseshoes:

Π	Π	
Π	Π	Π

<ロ> <四> <日> <日> <日> <日> <日> <日> <日> <<</p>

hyperbolicity 000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (i)						

Each orbit in the horseshoe \land is represented by a sequence of **0** (iterate in the red rectangle) and **1** (iterate in the blue rectangle):

.. 1010110....

symbolic dynamics (conjugation to shifts)

 $\Sigma = \{0, 1\}^{\mathbb{Z}}, \quad \text{with some metric...}$

 $\sigma \colon \Sigma \to \Sigma,$ $(x_i) \mapsto (y_i), \quad y_i = x_{i+1}.$... **0 1 0 1 0 1 1 ...**

・ロン・西シ・ヨン・ヨン・ヨー つくの

hyperbolicity 000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (i)						

Each orbit in the horseshoe \land is represented by a sequence of **0** (iterate in the red rectangle) and **1** (iterate in the blue rectangle):

... 1010110....

symbolic dynamics (conjugation to shifts)

 $\Sigma = \{0,1\}^{\mathbb{Z}}, \quad \text{with some metric...}$

 $\sigma \colon \Sigma \to \Sigma,$ $(x_i) \mapsto (y_i), \quad y_i = x_{i+1}.$... **0 1 0 1 0 1 1 ...**

・ロン・西シ・ヨン・ヨン・ヨー つくの

hyperbolicity 000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (i)						

Each orbit in the horseshoe Λ is represented by a sequence of **0** (iterate in the red rectangle) and **1** (iterate in the blue rectangle):

... 1010110....

symbolic dynamics (conjugation to shifts)

 $\Sigma = \{0, 1\}^{\mathbb{Z}}, \text{ with some metric...}$

 $\sigma \colon \Sigma \to \Sigma,$ $(x_i) \mapsto (y_i),$ $y_i = x_{i+1}.$... **0 1 0 1 0 1 1...**

うして ふぼう メロット ロー うめの

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (i)						

Each orbit in the horseshoe \land is represented by a sequence of **0** (iterate in the red rectangle) and **1** (iterate in the blue rectangle):

... 1010110....

symbolic dynamics (conjugation to shifts)

 $\Sigma = \{0,1\}^{\mathbb{Z}}, \quad \text{with some metric...}$

hyperbolicity 000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (i)						

Each orbit in the horseshoe Λ is represented by a sequence of **0** (iterate in the red rectangle) and **1** (iterate in the blue rectangle):

... 1010110....

symbolic dynamics (conjugation to shifts)

 $\Sigma=\{0,1\}^{\mathbb{Z}}, \quad \text{with some metric...}$

 $\sigma: \Sigma \to \Sigma, \qquad (x_i) \mapsto (y_i), \quad y_i = x_{i+1}.$

うして ふぼう メロット ロー うめの

hyperbolicity 000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (i)						

Each orbit in the horseshoe Λ is represented by a sequence of **0** (iterate in the red rectangle) and **1** (iterate in the blue rectangle):

... 1010110....

symbolic dynamics (conjugation to shifts)

 $\Sigma = \{0,1\}^{\mathbb{Z}}, \quad \text{with some metric...}$

 $\sigma: \Sigma \to \Sigma, \qquad (x_i) \mapsto (y_i), \quad y_i = x_{i+1}.$... 0 1 0 1 0 1 1 1.... \downarrow ... 1 0 1 0 1 1 0....

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (ii)						

$$egin{array}{ccc} \Sigma & o \sigma & o & \Sigma \ h \downarrow & & \downarrow h \ \Lambda & o f & \Lambda \end{array}$$

translate shift properties (symbolic dynamics) to the ambient dynamics:

- mixing, transitivity (dense orbits, recurrences....),
- infinitely many periodic points.

question:

which systems admit a (satisfactory) symbolic description.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (ii)						

$$egin{array}{ccc} \Sigma & o \sigma & o & \Sigma \ h \downarrow & & \downarrow h \ \Lambda & o f & \Lambda \end{array}$$

translate shift properties (symbolic dynamics) to the ambient dynamics:

mixing, transitivity (dense orbits, recurrences....),

infinitely many periodic points.

question:

which systems admit a (satisfactory) symbolic description.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (ii)						

$$egin{array}{ccc} \Sigma & o \sigma & o & \Sigma \ h \downarrow & & \downarrow h \ \Lambda & o f & \Lambda \end{array}$$

translate shift properties (symbolic dynamics) to the ambient dynamics:

- mixing, transitivity (dense orbits, recurrences....),
- infinitely many periodic points.

question:

which systems admit a (satisfactory) symbolic description.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (ii)						

$$egin{array}{ccc} \Sigma & o \sigma & o & \Sigma \ h \downarrow & & \downarrow h \ \Lambda & o f & \Lambda \end{array}$$

translate shift properties (symbolic dynamics) to the ambient dynamics:

- mixing, transitivity (dense orbits, recurrences....),
- infinitely many periodic points.

question:

which systems admit a (satisfactory) symbolic description.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
horseshoes						
symbolic dynamics (ii)						

$$egin{array}{ccc} \Sigma & o \sigma & o & \Sigma \ h \downarrow & & \downarrow h \ \Lambda & o f & \Lambda \end{array}$$

translate shift properties (symbolic dynamics) to the ambient dynamics:

- mixing, transitivity (dense orbits, recurrences....),
- infinitely many periodic points.

question:

which systems admit a (satisfactory) symbolic description.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
hyperbolicity				

directions corresponding to uniform contraction (stable) and expansion (unstable).

 $f \colon M \to M$, diffeo., M compact and closed,

 Λ : *f*-invariant (*f*(Λ) = Λ) compact set.

hyperbolic set:

 $T_{\Lambda}M=E^{s}\oplus E^{u},$

Df-invariant and constants C > 0 and $\lambda < 1$ with

 $|Df^m(v^s)| \le C \lambda^m |v^s|, \quad |Df^{-m}(v^u)| \le C \lambda^m |v^u|,$ for every $m \ge 0, v^s \in E_x^s$ and $v^u \in E_x^u,$ and all $x \in \Lambda.$

メロシス 理シス ヨシス ヨシー ヨー ろくぐ

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
hyporbolicity				

directions corresponding to uniform contraction (stable) and expansion (unstable).

- $f: M \rightarrow M$, diffeo., M compact and closed,
- Λ: *f*-invariant $(f(\Lambda) = \Lambda)$ compact set.

hyperbolic set:

 $T_{\Lambda}M=E^{s}\oplus E^{u},$

Df-invariant and constants C > 0 and $\lambda < 1$ with

 $|Df^m(v^s)| \le C \lambda^m |v^s|, \quad |Df^{-m}(v^u)| \le C \lambda^m |v^u|,$ for every $m \ge 0, v^s \in E_x^s$ and $v^u \in E_x^u,$ and all $x \in \Lambda.$

hyperbolicity 000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
hyperbolicity				

directions corresponding to uniform contraction (stable) and expansion (unstable).

- $f: M \rightarrow M$, diffeo., M compact and closed,
- A: *f*-invariant ($f(\Lambda) = \Lambda$) compact set.

hyperbolic set:

 $T_{\Lambda}M=E^{s}\oplus E^{u},$

Df-invariant and constants C > 0 and $\lambda < 1$ with

 $|Df^m(v^s)| \le C \lambda^m |v^s|, \quad |Df^{-m}(v^u)| \le C \lambda^m |v^u|,$ for every $m \ge 0, v^s \in E_x^s$ and $v^u \in E_x^u,$ and all $x \in \Lambda.$

メロシス 理シス ヨシス ヨシー ヨー ろくぐ

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
hyporbolicity				

directions corresponding to uniform contraction (stable) and expansion (unstable).

- $f: M \rightarrow M$, diffeo., M compact and closed,
- A: *f*-invariant ($f(\Lambda) = \Lambda$) compact set.

hyperbolic set:

 $T_{\Lambda}M=E^{s}\oplus E^{u},$

Df-invariant and constants C > 0 and $\lambda < 1$ with

 $|Df^m(v^s)| \le C \lambda^m |v^s|, \quad |Df^{-m}(v^u)| \le C \lambda^m |v^u|,$ for every $m \ge 0, v^s \in E_x^s$ and $v^u \in E_x^u,$ and all $x \in \Lambda.$

メロシス 理シス ヨシス ヨシー ヨー ろくぐ

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
hyporbolicity				

directions corresponding to uniform contraction (stable) and expansion (unstable).

- $f: M \rightarrow M$, diffeo., M compact and closed,
- A: *f*-invariant ($f(\Lambda) = \Lambda$) compact set.

hyperbolic set:

 $T_{\Lambda}M = E^s \oplus E^u$,

Df-invariant and constants C > 0 and $\lambda < 1$ with

 $|Df^m(v^s)| \le C \lambda^m |v^s|, \quad |Df^{-m}(v^u)| \le C \lambda^m |v^u|,$ for every $m \ge 0, v^s \in E_x^s$ and $v^u \in E_x^u,$ and all $x \in \Lambda.$

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
huporbolioitu				

directions corresponding to uniform contraction (stable) and expansion (unstable).

- $f: M \rightarrow M$, diffeo., M compact and closed,
- A: *f*-invariant ($f(\Lambda) = \Lambda$) compact set.

hyperbolic set:

 $T_{\Lambda}M = E^s \oplus E^u$,

Df-invariant and constants C > 0 and $\lambda < 1$ with

 $|Df^m(v^s)| \le C \lambda^m |v^s|, \quad |Df^{-m}(v^u)| \le C \lambda^m |v^u|,$ for every $m \ge 0, v^s \in E_x^s$ and $v^u \in E_x^u,$ and all $x \in \Lambda.$

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
huporbolioitu				

directions corresponding to uniform contraction (stable) and expansion (unstable).

- $f: M \rightarrow M$, diffeo., M compact and closed,
- A: *f*-invariant ($f(\Lambda) = \Lambda$) compact set.

hyperbolic set:

 $T_{\Lambda}M = E^s \oplus E^u$,

Df-invariant and constants C > 0 and $\lambda < 1$ with

 $|Df^{m}(v^{s})| \leq C \lambda^{m} |v^{s}|, \quad |Df^{-m}(v^{u})| \leq C \lambda^{m} |v^{u}|,$

for every $m \ge 0$, $v^s \in E_x^s$ and $v^u \in E_x^u$, and all $x \in \Lambda$.

hyperbolicity ○○○○●○○	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
hyperbolicity						
hyperbolicity						

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

イロト (理) イヨト (ヨト) ヨー のへで

generation of horseshoes

generation of hyperbolic sets (horsesoes)

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

イロト (理) イヨト (ヨト) ヨー のへで

generation of horseshoes

generation of hyperbolic sets (horsesoes)

beyond hyperbolicity

nyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

generation of horseshoes

generation of hyperbolic sets (horsesoes)

イロト イロト イミト イミト 一言 二のへの

beyond hyperbolicity

nyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

generation of horseshoes

generation of hyperbolic sets (horsesoes)

beyond hyperbolicity

nyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

generation of horseshoes

generation of hyperbolic sets (horsesoes)

イロト イロト イミト イミト 一言 二のへの

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

generation of horseshoes

generation of hyperbolic sets (horsesoes)

H(P) homoclinic class of P: closure of the transverse intersections its invariant (stable and unstable) manifolds.

- mixing, transitivity (dense orbits, recurrences....),
- infinitely many periodic points,
- in some cases *H*(*P*) fails to be hyperbolic...

	beyond hyperbolicity	hyperbolicity vs. cycles	weak h
000000			

weak hiperbolicities

non-hyperbolic features

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

hyperbolic summary

hyperbolic summary

- There is a complete theory of hyperbolic systems: geometric, topological, and ergodic (probabilistic) aspects.
- Nonhyperbolic systems are quite frequent and many of them exhibit "some (weak) hiperbolicity"
- non-hyperbolicities: non-uniform, partial, singular, dominated splittings....
- A little hyperbolicity goes a long way (Pugh-Shub).

	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolici
000000			

perbolicities nor

non-hyperbolic features

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

hyperbolic summary

hyperbolic summary

- There is a complete theory of hyperbolic systems: geometric, topological, and ergodic (probabilistic) aspects.
- Nonhyperbolic systems are quite frequent and many of them exhibit "some (weak) hiperbolicity"
- non-hyperbolicities: non-uniform, partial, singular, dominated splittings....
- A little hyperbolicity goes a long way (Pugh-Shub).

	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	nc
000000				

non-hyperbolic features

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

hyperbolic summary

hyperbolic summary

- There is a complete theory of hyperbolic systems: geometric, topological, and ergodic (probabilistic) aspects.
- Nonhyperbolic systems are quite frequent and many of them exhibit "some (weak) hiperbolicity"
- non-hyperbolicities: non-uniform, partial, singular, dominated splittings....
- A little hyperbolicity goes a long way (Pugh-Shub).

	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	
000000				

non-hyperbolic features

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

hyperbolic summary

hyperbolic summary

- There is a complete theory of hyperbolic systems: geometric, topological, and ergodic (probabilistic) aspects.
- Nonhyperbolic systems are quite frequent and many of them exhibit "some (weak) hiperbolicity"
- non-hyperbolicities: non-uniform, partial, singular, dominated splittings....
- A little hyperbolicity goes a long way (Pugh-Shub).
eyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

beyond hyperbolicity

goals, questions

- How to characterize the absence of (uniform) hyperbolicity?
- What structures cannot exist in the hyperbolic case but must be present in its complement?

eyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

beyond hyperbolicity

goals, questions

- How to characterize the absence of (uniform) hyperbolicity?
- What structures cannot exist in the hyperbolic case but must be present in its complement?

hyperbolicity 0000000	beyond hyperbolicity ooooooooo	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dichotomy conjectu	ire (Palis)			

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies (dim \geq 2),
- heterodimensional cycles (dim \geq 3).

hyperbolicity	beyond hyperbolicity ●oooooooo	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dichotomy conject	ure (Palis)			

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies (dim \geq 2),
- heterodimensional cycles (dim \geq 3).

0000000	0000000	0000000	0000	00000
hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies (dim \geq 2),
- heterodimensional cycles (dim \geq 3).

hyperbolicity 0000000	beyond hyperbolicity ●oooooooo	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
dichotomy conject	dichotomy conjecture (Palis)					

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies (dim \geq 2),
- heterodimensional cycles (dim \geq 3).

hyperbolicity 0000000	beyond hyperbolicity ●oooooooo	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dichotomy conjectu	re (Palis)			

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies (dim \geq 2),
- heterodimensional cycles (dim \geq 3).

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dichotomy conje	ecture (Palis)			

the conjecture holds for

- circle maps (Peixoto),
- C¹ surface diffeomorphisms (Pujals-Sambarino),
- *C*¹ tame diffeomorphisms (Bonatti-D.).

tame diffeomorphisms

Those having stably finitely many homoclinic classes.

イロト 不同 トイヨト イヨト ヨー のへで

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dichotomy conje	ecture (Palis)			

the conjecture holds for

- circle maps (Peixoto),
- C¹ surface diffeomorphisms (Pujals-Sambarino),
- *C*¹ tame diffeomorphisms (Bonatti-D.).

tame diffeomorphisms

Those having stably finitely many homoclinic classes.

イロト 不同 トイヨト イヨト ヨー のへで

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dichotomy conject	cture (Palis)			

the conjecture holds for

- circle maps (Peixoto),
- C¹ surface diffeomorphisms (Pujals-Sambarino),
- C¹ tame diffeomorphisms (Bonatti-D.).

tame diffeomorphisms

Those having stably finitely many homoclinic classes.

イロト 不同 トイヨト イヨト ヨー のへで

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dichotomy conje	ecture (Palis)			

the conjecture holds for

- circle maps (Peixoto),
- C¹ surface diffeomorphisms (Pujals-Sambarino),
- C¹ tame diffeomorphisms (Bonatti-D.).

tame diffeomorphisms

Those having stably finitely many homoclinic classes.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dichotomy conje	ecture (Palis)			

the conjecture holds for

- circle maps (Peixoto),
- C¹ surface diffeomorphisms (Pujals-Sambarino),
- C¹ tame diffeomorphisms (Bonatti-D.).

tame diffeomorphisms

Those having stably finitely many homoclinic classes.

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

critical and non-critical

typical non-hyperbolicities

ingredients of hyperbolicity:

- uniform rate of expansion and contraction,
- the angle between these directions is uniformly bounded away from zero.

- critical,
- on non-critical.

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

イロト 不得 トイヨト イヨト ヨー のくで

critical and non-critical

typical non-hyperbolicities

ingredients of hyperbolicity:

• uniform rate of expansion and contraction,

• the angle between these directions is uniformly bounded away from zero.

- critical,
- on non-critical.

hyperbolicity		hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic featur
	00000000			

critical and non-critical

typical non-hyperbolicities

ingredients of hyperbolicity:

- uniform rate of expansion and contraction,
- the angle between these directions is uniformly bounded away from zero.

- critical,
- on non-critical.

hyperbolicity		hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic featur
	00000000			

critical and non-critical

typical non-hyperbolicities

ingredients of hyperbolicity:

- uniform rate of expansion and contraction,
- the angle between these directions is uniformly bounded away from zero.

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

- critical,
- non-critical.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
critical dynamics					
critical dynamics					

- models: Quadratic family, Hénon-like maps,
- the rate expansion is not uniform, the angles between the invariant directions are not uniform,
- homoclinic tangencies extend the notion of a critical point.

- models: Quadratic family, Hénon-like maps,
- the rate expansion is not uniform, the angles between the invariant directions are not uniform,
- homoclinic tangencies extend the notion of a critical point.

イロト 不得 トイヨト イヨト ヨー のくで

- models: Quadratic family, Hénon-like maps,
- the rate expansion is not uniform, the angles between the invariant directions are not uniform,
- homoclinic tangencies extend the notion of a critical point.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
critical dynamics	i				
critical dynamics					

- models: Quadratic family, Hénon-like maps,
- the rate expansion is not uniform, the angles between the direction are not uniform,
- homoclinic tangencies extend the notion of a critical point.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
critical dynamics					
critical dynamics					

- models: Quadratic family, Hénon-like maps,
- the rate expansion is not uniform, the angles between the direction are not uniform,
- homoclinic tangencies extend the notion of a critical point.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
non-critical dynami	cs			

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction,uniform (bounded away from zero) angles.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
non-critical dynam	ics			

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction, uniform (bounded away from zero) angles.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
non-critical dynam	ics			

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction, uniform (bounded away from zero) angles.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
non-critical dynam	ics			

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction,uniform (bounded away from zero) angles.

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
non-critical dynam	ics			

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction,uniform (bounded away from zero) angles.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
non-critical dynam	ics			

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction, uniform (bounded away from zero) angles.

< ロ > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > <

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
non-critical dynamics					

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction, uniform (bounded away from zero) angles.

< ロ > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > <

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
non-critical dynamics					

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction, uniform (bounded away from zero) angles.

< ロ > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > <

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
non-critical dynamics					

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction, uniform (bounded away from zero) angles.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features			
non-critical dynamics							

- models: Partially hyperbolic systems, heterodim. cycles
- the effects of the contraction and expansion in a direction overlap, there is a neutral/central direction, uniform (bounded away from zero) angles.

hyperbolicity		hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
	000000000			

non-hyperbolic homoclinic classes

H(P) may content saddles of index (dimension of stable bundle) different from the one of P. Typical non-dynamical feature.

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

イロト 不得 トイヨト イヨト ヨー のくで

non-critical dynamics

non-hyperbolic homoclinic classes

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

non-critical dynamics

non-hyperbolic homoclinic classes

イロト イロト イミト イミト 一言 二のへの

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

non-critical dynamics

non-hyperbolic homoclinic classes

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

non-critical dynamics

non-hyperbolic homoclinic classes

hyperbolicity

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

イロト 不得 トイヨト イヨト ヨー のくで

non-critical dynamics

non-hyperbolic homoclinic classes

caution: a homoclinic class whose saddles have all the same index may be non-hyperbolic....

hyperbolicity		hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
	00000000			

non-critical model: skew products

f₀, f₁ circle maps,

f₀ East-West map, f₁ irrational rotation.

 $\sigma: \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ horseshoe (shift map). skew-product (partially hyperbolic map)

 $F\colon \{0,1\}^{\mathbb{Z}}\times \mathbb{S}^1 \to \{0,1\}^{\mathbb{Z}}\times \mathbb{S}^1, \quad F(\alpha,x) = (\sigma(\alpha), f_{\alpha_0}(x)).$

hyperbolicity		hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
	000000000			

non-critical model: skew products

f₀, f₁ circle maps,

 f_0 East-West map, f_1 irrational rotation.

 $\sigma: \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ horseshoe (shift map). skew-product (partially hyperbolic map)

 $F: \{0,1\}^{\mathbb{Z}} \times \mathbb{S}^1 \to \{0,1\}^{\mathbb{Z}} \times \mathbb{S}^1, \quad F(\alpha, x) = (\sigma(\alpha), f_{\alpha_0}(x)).$

hyperbolicity		hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
	00000000			

non-critical model: skew products

f₀, f₁ circle maps,

 f_0 East-West map, f_1 irrational rotation.

 $\sigma: \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ horseshoe (shift map).

 $F\colon \{0,1\}^{\mathbb{Z}}\times \mathbb{S}^1 \to \{0,1\}^{\mathbb{Z}}\times \mathbb{S}^1, \quad F(\alpha,x) = (\sigma(\alpha), f_{\alpha_0}(x)).$

hyperbolicity		hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
	00000000			

non-critical model: skew products

f₀, f₁ circle maps,

 f_0 East-West map, f_1 irrational rotation.

 $\sigma : \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ horseshoe (shift map). skew-product (partially hyperbolic map)

 $F\colon \{0,1\}^{\mathbb{Z}}\times \mathbb{S}^1 \to \{0,1\}^{\mathbb{Z}}\times \mathbb{S}^1, \quad F(\alpha,x)=(\sigma(\alpha),f_{\alpha_0}(x)).$

hyperbolicity

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

dichotomies and more

hyperbolicity and cycles

$\operatorname{Diff}^1(M)$

weak hiperbolicities

non-hyperbolic features

イロト 不得 トイヨト イヨト ヨー のくで

dichotomies and more

hyperbolicity and cycles

$\operatorname{Diff}^1(M)$

hyperbolicity

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

dichotomies and more

hyperbolicity and cycles

 $\operatorname{Diff}^1(M)$

robust het. cycles

robust het. cycles robust tangencies

hyperbolicity

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

dichotomies and more

hyperbolicity and cycles

 $\operatorname{Diff}^1(M)$

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
robust cycles				

 Λ and Σ hyperbolic sets, different indices

 $\mathcal{W}^{s}(\Lambda)\cap \mathcal{W}^{u}(\Sigma)
eq \emptyset \quad \mathcal{W}^{u}(\Lambda)\cap \mathcal{W}^{s}(\Sigma)
eq \emptyset.$

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies) every *g* close to *f* has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
robust svalas				

Λ and Σ hyperbolic sets, different indices

 $\mathcal{W}^{s}(\Lambda)\cap \mathcal{W}^{u}(\Sigma)
eq \emptyset \quad \mathcal{W}^{u}(\Lambda)\cap \mathcal{W}^{s}(\Sigma)
eq \emptyset.$

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies) every a close to f has a cycle

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
rebust susles				

Λ and Σ hyperbolic sets, different indices

$\mathcal{W}^{s}(\Lambda)\cap \mathcal{W}^{u}(\Sigma) eq \emptyset \quad \mathcal{W}^{u}(\Lambda)\cap \mathcal{W}^{s}(\Sigma) eq \emptyset.$

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)

every g close to f has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

robust cycles				
hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features

Λ and Σ hyperbolic sets, different indices

 $W^{s}(\Lambda) \cap W^{u}(\Sigma) \neq \emptyset \quad W^{u}(\Lambda) \cap W^{s}(\Sigma) \neq \emptyset.$

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies) every *q* close to *f* has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

robust cycles				
0000000	000000000	00000000	0000	00000
hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features

Λ and Σ hyperbolic sets, different indices

 $W^{s}(\Lambda) \cap W^{u}(\Sigma) \neq \emptyset \quad W^{u}(\Lambda) \cap W^{s}(\Sigma) \neq \emptyset.$

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

robust cycles				
0000000	000000000	0000000		00000
hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features

 Λ and Σ hyperbolic sets, different indices

 $W^{s}(\Lambda) \cap W^{u}(\Sigma) \neq \emptyset \quad W^{u}(\Lambda) \cap W^{s}(\Sigma) \neq \emptyset.$

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies) every q close to f has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

robust cycles				
0000000	000000000	00000000	0000	00000
hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features

 Λ and Σ hyperbolic sets, different indices

 $W^{s}(\Lambda) \cap W^{u}(\Sigma) \neq \emptyset \quad W^{u}(\Lambda) \cap W^{s}(\Sigma) \neq \emptyset.$

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)

every g close to f has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

robust cycles				
0000000	000000000	00000000	0000	00000
hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features

 Λ and Σ hyperbolic sets, different indices

 $W^{s}(\Lambda) \cap W^{u}(\Sigma) \neq \emptyset \quad W^{u}(\Lambda) \cap W^{s}(\Sigma) \neq \emptyset.$

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)

every g close to f has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

weak hiperbolicities

non-hyperbolic features

non-hyperbolic features

non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

weak hiperbolicities

non-hyperbolic features

non-hyperbolic features

non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

weak hiperbolicities

non-hyperbolic features

non-hyperbolic features

non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

weak hiperbolicities

non-hyperbolic features

non-hyperbolic features

non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

weak hiperbolicities

non-hyperbolic features

non-hyperbolic features

non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

weak hiperbolicities

non-hyperbolic features

non-hyperbolic features

non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

weak hiperbolicities

non-hyperbolic features

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

non-hyperbolic features

non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

question

hyperbolicity	beyond hyperbolicity		weak hiperbolicities	non-hyperbolic features
		00000000		

non-hyperbolic ergodic measures

diffeo $f: M \to M$, dim M = n,

 μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ -measure,

 $\chi^1_\mu \leq \chi^2_\mu \leq \cdots \leq \chi^n$ for all $x \in \Lambda$ and all $v \in T_x M, v \neq 0$,

 $\lim_{n\to\infty}\frac{1}{n}\log||Df^n(v)||=\chi^i_\mu, \text{ some } i=1,\ldots,n.$

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 χ^i_μ is the *i*-th Lyapunov exponent of μ .

 μ is non-hyperbolic if $\chi^i_{\mu} = 0$ for some *i*.

hyperbolicity	beyond hyperbolicity		weak hiperbolicities	non-hyperbolic features
		00000000		

non-hyperbolic ergodic measures

diffeo $f: M \to M$, dim M = n,

 μ ergodic measure of $f: \mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1,$

there are Λ of full μ -measure,

 $\chi^1_\mu \leq \chi^2_\mu \leq \cdots \leq \chi^n$ for all $x \in \Lambda$ and all $v \in T_x M, v \neq 0$,

 $\lim_{n\to\infty}\frac{1}{n}\log||Df^n(v)||=\chi^i_\mu, \text{ some } i=1,\ldots,n.$

 χ^i_μ is the *i*-th Lyapunov exponent of μ .

 μ is non-hyperbolic if $\chi^i_{\mu} = 0$ for some *i*.

hyperbolicity	beyond hyperbolicity		weak hiperbolicities	non-hyperbolic features
		00000000		

non-hyperbolic ergodic measures

diffeo $f: M \to M$, dim M = n,

 μ ergodic measure of $f: \mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ -measure,

 $\chi^1_\mu \leq \chi^2_\mu \leq \cdots \leq \chi^n$ for all $x \in \Lambda$ and all $v \in T_x M, \, v
eq 0$,

 $\lim_{n\to\infty}\frac{1}{n}\log||Df^n(v)||=\chi^i_\mu, \text{ some } i=1,\ldots,n.$

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

 χ^i_μ is the *i*-th Lyapunov exponent of μ .

 μ is non-hyperbolic if $\chi_{\mu}^{i} = 0$ for some *i*.

hyperbolicity	beyond hyperbolicity		weak hiperbolicities	non-hyperbolic features
		00000000		

non-hyperbolic ergodic measures

diffeo $f: M \to M$, dim M = n,

 μ ergodic measure of $f: \mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1,$

there are Λ of full μ -measure,

 $\chi^1_\mu \leq \chi^2_\mu \leq \cdots \leq \chi^n$ for all $x \in \Lambda$ and all $v \in T_x M$, $v \neq 0$,

 $\lim_{n\to\infty}\frac{1}{n}\log||Df^n(v)||=\chi^i_\mu, \text{ some } i=1,\ldots,n.$

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 χ^i_μ is the *i*-th Lyapunov exponent of μ .

 μ is non-hyperbolic if $\chi^i_{\mu} = 0$ for some *i*.

hyperbolicity	beyond hyperbolicity		weak hiperbolicities	non-hyperbolic features
		00000000		

non-hyperbolic ergodic measures

diffeo $f: M \to M$, dim M = n,

 μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$, there are Λ of full μ -measure,

$$\begin{split} \chi_{\mu}^{1} &\leq \chi_{\mu}^{2} \leq \cdots \leq \chi^{n} \\ \text{for all } x \in \Lambda \text{ and all } v \in T_{x}M, \, v \neq 0, \\ \lim_{n \to \infty} \frac{1}{n} \log ||Df^{n}(v)|| &= \chi_{\mu}^{i}, \quad \text{some } i = 1, \dots, n. \\ \chi_{\mu}^{i} \text{ is the } i\text{-th Lyapunov exponent of } \mu. \\ \mu \text{ is non-hyperbolic if } \chi_{\mu}^{i} &= 0 \text{ for some } i. \end{split}$$

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

hyperbolicity	beyond hyperbolicity		weak hiperbolicities	non-hyperbolic features
		00000000		

non-hyperbolic ergodic measures

diffeo $f: M \to M$, dim M = n,

 μ ergodic measure of $f: \mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1,$

there are Λ of full μ -measure,

$$\begin{split} \chi_{\mu}^{1} &\leq \chi_{\mu}^{2} \leq \cdots \leq \chi^{n} \\ \text{for all } x \in \Lambda \text{ and all } v \in T_{x}M, \, v \neq 0, \\ \lim_{n \to \infty} \frac{1}{n} \log ||Df^{n}(v)|| &= \chi_{\mu}^{i}, \quad \text{some } i = 1, \dots, n. \\ \chi_{\mu}^{i} \text{ is the } i\text{-th Lyapunov exponent of } \mu. \\ \mu \text{ is non-hyperbolic if } \chi_{\mu}^{i} &= 0 \text{ for some } i. \end{split}$$

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

hyperbolicity	beyond hyperbolicity		weak hiperbolicities	non-hyperbolic features
		00000000		

non-hyperbolic ergodic measures

diffeo $f: M \to M$, dim M = n,

 μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$, there are Λ of full μ -measure,

$$\begin{split} \chi_{\mu}^{1} &\leq \chi_{\mu}^{2} \leq \cdots \leq \chi^{n} \\ \text{for all } x \in \Lambda \text{ and all } v \in T_{x}M, \, v \neq 0, \\ \lim_{n \to \infty} \frac{1}{n} \log ||Df^{n}(v)|| &= \chi_{\mu}^{i}, \quad \text{some } i = 1, \dots, n. \\ \chi_{\mu}^{i} \text{ is the } i\text{-th Lyapunov exponent of } \mu. \\ \mu \text{ is non-hyperbolic if } \chi_{\mu}^{i} &= 0 \text{ for some } i. \end{split}$$

hyperbolicity	beyond hyperbolicity		weak hiperbolicities	non-hyperbolic features
		00000000		

non-hyperbolic ergodic measures

diffeo $f: M \to M$, dim M = n,

 μ ergodic measure of $f: \mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1,$

there are Λ of full μ -measure,

$$\begin{split} \chi_{\mu}^{1} &\leq \chi_{\mu}^{2} \leq \cdots \leq \chi^{n} \\ \text{for all } x \in \Lambda \text{ and all } v \in T_{x}M, \, v \neq 0, \\ \lim_{n \to \infty} \frac{1}{n} \log ||Df^{n}(v)|| &= \chi_{\mu}^{i}, \quad \text{some } i = 1, \dots, n. \\ \chi_{\mu}^{i} \text{ is the } i\text{-th Lyapunov exponent of } \mu. \\ \mu \text{ is non-hyperbolic if } \chi_{\mu}^{i} &= 0 \text{ for some } i. \end{split}$$

hyperbolicity	beyond hyperbolicity		weak hiperbolicities	non-hyperbolic features
		00000000		

non-hyperbolic ergodic measures

diffeo $f: M \to M$, dim M = n,

 μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$, there are Λ of full μ -measure,

$$\begin{split} \chi_{\mu}^{1} &\leq \chi_{\mu}^{2} \leq \cdots \leq \chi^{n} \\ \text{for all } x \in \Lambda \text{ and all } v \in T_{x}M, \, v \neq 0, \\ \lim_{n \to \infty} \frac{1}{n} \log ||Df^{n}(v)|| &= \chi_{\mu}^{i}, \quad \text{some } i = 1, \dots, n. \\ \chi_{\mu}^{i} \text{ is the } i\text{-th Lyapunov exponent of } \mu. \\ \mu \text{ is non-hyperbolic if } \chi_{\mu}^{i} &= 0 \text{ for some } i. \end{split}$$

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles ○○○○○○●	weak hiperbolicities	non-hyperbolic features		
non-hyperbolic features						

symbolic extensions

$f: X \rightarrow X$, homeomorphism,

(X, f) has a symbolic extension if there exists a subshift (finitely many symbols) (Y, σ) and a continuous surjective map $\pi : Y \to X$ such that

 $\pi \circ \sigma = \mathbf{f} \circ \pi.$

 (Y, σ) is called an extension of (X, f)

(X, f) is a factor of (Y, σ) .

remark (!!): super-exponential growth is compatible with the existence of symbolic extensions.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
non-hyperbolic features						
symbolic extensions						

 $f: X \rightarrow X$, homeomorphism,

(X, f) has a symbolic extension if there exists a subshift (finitely many symbols) (Y, σ) and a continuous surjective map $\pi : Y \to X$ such that

 $\pi \circ \sigma = \mathbf{f} \circ \pi.$

 (Y, σ) is called an extension of (X, f)

(X, f) is a factor of (Y, σ) .

remark (!!): super-exponential growth is compatible with the existence of symbolic extensions.

(日) (理) (ヨ) (ヨ) (ヨ) ()

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
non-hyperbolic features						
symbolic extensions						

$f: X \rightarrow X$, homeomorphism,

(X, f) has a symbolic extension if there exists a subshift (finitely many symbols) (Y, σ) and a continuous surjective map $\pi : Y \to X$ such that

$$\pi \circ \sigma = \mathbf{f} \circ \pi.$$

(Y, σ) is called an extension of (X, f)

(X, f) is a factor of (Y, σ) .

remark (!!): super-exponential growth is compatible with the existence of symbolic extensions.

うして ふぼう メロット ロー うめの
hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
non-hyperbolic fea	atures			

$f: X \rightarrow X$, homeomorphism,

symbolic extensions

(X, f) has a symbolic extension if there exists a subshift (finitely many symbols) (Y, σ) and a continuous surjective map $\pi : Y \to X$ such that

$$\pi \circ \sigma = \mathbf{f} \circ \pi.$$

(Y, σ) is called an extension of (X, f)

(X, f) is a factor of (Y, σ) .

remark (!!): super-exponential growth is compatible with the existence of symbolic extensions.

うして ふぼう メロット ロー うめの

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
non-hyperbolic fe	atures			

 $f: X \rightarrow X$, homeomorphism,

symbolic extensions

(X, f) has a symbolic extension if there exists a subshift (finitely many symbols) (Y, σ) and a continuous surjective map $\pi : Y \to X$ such that

$$\pi \circ \sigma = \mathbf{f} \circ \pi.$$

 (Y, σ) is called an extension of (X, f)

(X, f) is a factor of (Y, σ) .

remark (!!): super-exponential growth is compatible with the existence of symbolic extensions.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
domination				
domina	tion (i)			

$f: M \rightarrow M$, diffeo., M compact and closed,

Λ : *f*-invariant (*f*(Λ) = Λ) compact set.

dominated splitting: $T_{\Lambda}M = E \oplus F$, *Df*-invariant and there is *m* with

 $\frac{|Df^m(v)|}{|(Df^m(w))|} \leq \frac{1}{2}$

< ロ > < 同 > < 三 > < 三 > 、 三 > への < つ > <

- $f: M \rightarrow M$, diffeo., M compact and closed,
- A: *f*-invariant ($f(\Lambda) = \Lambda$) compact set.

 $\frac{|Df^m(v)|}{|(Df^m(w))|} \leq \frac{1}{2}$

イロト 不得 トイヨト イヨト ヨー のくで

- $f: M \rightarrow M$, diffeo., M compact and closed,
- A: *f*-invariant ($f(\Lambda) = \Lambda$) compact set.

 $\frac{|Df^m(v)|}{|(Df^m(w))|} \leq \frac{1}{2}$

イロト 不得 トイヨト イヨト ヨー のくで

- $f: M \rightarrow M$, diffeo., M compact and closed,
- A: *f*-invariant ($f(\Lambda) = \Lambda$) compact set.

 $\frac{|Df^m(v)|}{|(Df^m(w))|} \leq \frac{1}{2}$

イロト 不得 トイヨト イヨト ヨー のくで

- $f: M \rightarrow M$, diffeo., M compact and closed,
- A: *f*-invariant ($f(\Lambda) = \Lambda$) compact set.

$$\frac{|Df^m(v)|}{|(Df^m(w))|} \leq \frac{1}{2}$$

イロト 不得 トイヨト イヨト ヨー のくで

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
domination					
domination (ii)					

うびん 御 スポッスポット語 ふくりょ

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
domination					
domination (ii)					

うびん 神 スポットボット モッ

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
domination					
domination (ii)					

うびん 神 スポットボット モッ

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
domination					
domination (iii)					

domination: $T_{\Lambda}M = (E_1 \oplus \cdots \oplus E_j) \oplus (E_{j+1} \oplus \cdots \oplus E_k)$ for all j < k.

partial hyperbolicity: some of the extremal bundles is hyperbolic.

finest dominated splitting: the splitting of the bundles can not be decomposed in a dominated way (indecomposable bundles).

(日) (理) (ヨ) (ヨ) (ヨ) ()

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features	
domination					
domination (iii)					

domination: $T_{\Lambda}M = (E_1 \oplus \cdots \oplus E_j) \oplus (E_{j+1} \oplus \cdots \oplus E_k)$ for all j < k.

partial hyperbolicity: some of the extremal bundles is hyperbolic.

finest dominated splitting: the splitting of the bundles can not be decomposed in a dominated way (indecomposable bundles).

<ロ> < 同 > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
domination						
domination (iii)						

domination: $T_{\Lambda}M = (E_1 \oplus \cdots \oplus E_j) \oplus (E_{j+1} \oplus \cdots \oplus E_k)$ for all j < k.

partial hyperbolicity: some of the extremal bundles is hyperbolic.

finest dominated splitting: the splitting of the bundles can not be decomposed in a dominated way (indecomposable bundles).

< ロ > < 同 > < 三 > < 三 > 、 三 > へ 回 > 、 ○ へ ○ >

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
domination						
domination (iii)						

domination: $T_{\Lambda}M = (E_1 \oplus \cdots \oplus E_j) \oplus (E_{j+1} \oplus \cdots \oplus E_k)$ for all j < k.

partial hyperbolicity: some of the extremal bundles is hyperbolic.

finest dominated splitting: the splitting of the bundles can not be decomposed in a dominated way (indecomposable bundles).

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
finest dominated splitting						
types of	of splittings					

possibilities for the finest dominated splitting of a homoclinic class.

non-critical case: three bundles E^s ⊕ E^c ⊕ E^u, E^s and E^u hyperbolic.

- o critical case:
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^u$, E^s and E^u one-dimensional and hyperbolic.
 - non-existence.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features		
finest dominated splitting						
types of splittings						

possibilities for the finest dominated splitting of a homoclinic class.

non-critical case: three bundles E^s ⊕ E^c ⊕ E^u, E^s and E^u hyperbolic.

- o critical case:
 - two bundles: E^s ⊕ E^{cu} or E^{cs} ⊕ E^u, E^s and E^u one-dimensional and hyperbolic.
 - non-existence.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
finest dominated	d splitting			
types of	of splittings			

possibilities for the finest dominated splitting of a homoclinic class.

non-critical case: three bundles E^s ⊕ E^c ⊕ E^u, E^s and E^u hyperbolic.

- o critical case:
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^{u}$, E^s and E^{u} one-dimensional and hyperbolic.
 - non-existence.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
finest dominated	d splitting			
types of	of splittings			

possibilities for the finest dominated splitting of a homoclinic class.

non-critical case: three bundles E^s ⊕ E^c ⊕ E^u, E^s and E^u hyperbolic.

- o critical case:
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^{u}$, E^s and E^{u} one-dimensional and hyperbolic.
 - non-existence.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
finest dominated	d splitting			
types of	of splittings			

possibilities for the finest dominated splitting of a homoclinic class.

non-critical case: three bundles E^s ⊕ E^c ⊕ E^u, E^s and E^u hyperbolic.

- critical case:
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^{u}$, E^s and E^{u} one-dimensional and hyperbolic.
 - non-existence.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
finest dominated	d splitting			
types of	of splittings			

possibilities for the finest dominated splitting of a homoclinic class.

non-critical case: three bundles E^s ⊕ E^c ⊕ E^u, E^s and E^u hyperbolic.

- o critical case:
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^u$, E^s and E^u

one-dimensional and hyperbolic.

non-existence.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
finest dominated	d splitting			
types of	of splittings			

possibilities for the finest dominated splitting of a homoclinic class.

non-critical case: three bundles E^s ⊕ E^c ⊕ E^u, E^s and E^u hyperbolic.

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

- o critical case:
 - two bundles: *E^s* ⊕ *E^{cu}* or *E^{cs}* ⊕ *E^u*, *E^s* and *E^u* one-dimensional and hyperbolic.
 - non-existence.

hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
finest dominated	d splitting			
types of	of splittings			

possibilities for the finest dominated splitting of a homoclinic class.

non-critical case: three bundles E^s ⊕ E^c ⊕ E^u, E^s and E^u hyperbolic.

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

- o critical case:
 - two bundles: E^s ⊕ E^{cu} or E^{cs} ⊕ E^u, E^s and E^u one-dimensional and hyperbolic.
 - non-existence.

hyperbolicity	
0000000	

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

dynamical features and splittings

non-hyperbolic features

*C*¹ generic setting (homoclinic classes with saddles of different indices):

non-hyperbolicity always implies:

- supergrowth of the the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D-Turcat),
- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).

hy	pe	rbo	lici	ty
00	00	00	00	

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

dynamical features and splittings

non-hyperbolic features

C^1 generic setting (homoclinic classes with saddles of different indices):

non-hyperbolicity always implies:

- supergrowth of the the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D-Turcat),
- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).

dynamical features	and solittings			
hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features

C^1 generic setting (homoclinic classes with saddles of different indices):

non-hyperbolicity always implies:

- supergrowth of the the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D-Turcat),

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features ●○○○○
dynamical features	and splittings			

 C^1 generic setting (homoclinic classes with saddles of different indices):

non-hyperbolicity always implies:

- supergrowth of the the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D-Turcat),

うして ふぼう メロット ロー うめの

- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dynamical features	and splittings			

 C^1 generic setting (homoclinic classes with saddles of different indices):

non-hyperbolicity always implies:

- supergrowth of the the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D-Turcat),

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features
dynamical features	and splittings			

 C^1 generic setting (homoclinic classes with saddles of different indices):

non-hyperbolicity always implies:

- supergrowth of the the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D-Turcat),

< ロ > < 同 > < 三 > < 三 > 、 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features ●○○○○	
dynamical features and splittings					

 C^1 generic setting (homoclinic classes with saddles of different indices):

non-hyperbolicity always implies:

- supergrowth of the the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D-Turcat),

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	
				00000

further information, non-critical case

E^c one-dimensional

- C^1 -generically:
 - existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
 - non-hyperbolic measures with full support (Bonatti-D.-Gorodetski).

higher dimensions: if *E^c* splits into 1D bundles...

- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- existence non-hyperbolic measures with full support and zero Lyapunov exponents.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	
				00000

further information, non-critical case

E^c one-dimensional

- C^1 -generically:
 - existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
 - non-hyperbolic measures with full support (Bonatti-D.-Gorodetski).

higher dimensions: if *E^c* splits into 1D bundles...

- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- existence non-hyperbolic measures with full support and zero Lyapunov exponents.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	
				00000

further information, non-critical case

E^c one-dimensional

- C^1 -generically:
 - existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
 - non-hyperbolic measures with full support (Bonatti-D.-Gorodetski).

higher dimensions: if E^c splits into 1D bundles....

- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- existence non-hyperbolic measures with full support and zero Lyapunov exponents.

hyperbolicity	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	
				00000

further information, non-critical case

E^c one-dimensional

- C^1 -generically:
 - existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
 - non-hyperbolic measures with full support (Bonatti-D.-Gorodetski).

higher dimensions: if *E^c* splits into 1D bundles....

- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- existence non-hyperbolic measures with full support and zero Lyapunov exponents.

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

hyperbolicity

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

critical and super-critical cases

further information, critical case

E^c two-dimensional

- C¹-generic non-existence of symbolic extensions (D-Fisher-Pacifico-Vietez, Asaoka) based on Downarowicz-Newhouse,
- robust homoclinic tangencies (Bonatti-D.).

hyperbolicity

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

critical and super-critical cases

further information, critical case

E^c two-dimensional

- C¹-generic non-existence of symbolic extensions (D-Fisher-Pacifico-Vietez, Asaoka) based on Downarowicz-Newhouse,
- robust homoclinic tangencies (Bonatti-D.).

hyperbolicity

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

イロト 不得 トイヨト イヨト ヨー のくで

critical and super-critical cases

further information, super-critical case

non-dominated

- C¹-generic non-existence of symbolic extensions,
- robust homoclinic tangencies,
- *C*¹-generic infinitely many sinks/sources (Bonatti-D.-Pujals).
hyperbolicity

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

イロト 不得 トイヨト イヨト ヨー のくで

critical and super-critical cases

further information, super-critical case

non-dominated

- C¹-generic non-existence of symbolic extensions,
- robust homoclinic tangencies,
- C¹-generic infinitely many sinks/sources (Bonatti-D.-Pujals).

hyperbolicity

beyond hyperbolicity

hyperbolicity vs. cycles

weak hiperbolicities

non-hyperbolic features

<ロ> <用> <用> < 三> < 三> < 三 > < □ > <

critical and super-critical cases

further information, super-critical case

non-dominated

- C¹-generic non-existence of symbolic extensions,
- robust homoclinic tangencies,
- C¹-generic infinitely many sinks/sources (Bonatti-D.-Pujals).

summary				
hyperbolicity 0000000	beyond hyperbolicity	hyperbolicity vs. cycles	weak hiperbolicities	non-hyperbolic features

summarizing table

dimension three:

dynamics/splitting	3 bundles	2 bundles	non-exist.
 Robust tangencies 	No	Yes	Yes
 Robust het. cycles 	Yes	Yes	Yes
 non-hyperbolic measures 	Yes	Yes	Yes
- full support	Yes	Yes?	Yes?
- # zero exponents	1	2?	3?
 symbolic extensions 	Yes	No	No
• ∞ -sinks/sources	No	depend	Yes

〈ロ〉〈母〉〈ヨ〉〈ヨ〉〈ヨ〉〉 ほうろくの