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horseshoes

symbolic dynamics (i)

Each orbit in the horseshoe Λ is represented by a sequence of
0 (iterate in the red rectangle) and 1 (iterate in the blue
rectangle):

... 1 0 1 0 1 1 0....

symbolic dynamics (conjugation to shifts)

Σ = {0,1}Z, with some metric...

σ : Σ→ Σ, (xi) 7→ (yi), yi = xi+1.

... 0 1 0 1 0 1 1....

↓
... 1 0 1 0 1 1 0....
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horseshoes

symbolic dynamics (ii)

commutative diagramm: h is a homeomorphism (conjugation).

Σ → σ → Σ
h ↓ ↓ h

Λ → f → Λ

translate shift properties (symbolic dynamics) to the ambient
dynamics:

mixing, transitivity (dense orbits, recurrences....),
infinitely many periodic points.

question:
which systems admit a (satisfactory) symbolic description.
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hyperbolicity

hyperbolicity: key ingredients

directions corresponding to uniform contraction (stable) and
expansion (unstable).

f : M → M, diffeo., M compact and closed,

Λ: f -invariant (f (Λ) = Λ) compact set.

hyperbolic set:

TΛM = Es ⊕ Eu,

Df -invariant and constants C > 0 and λ < 1 with

|Df m(vs)| ≤ C λm |vs|, |Df−m(vu)| ≤ C λm |vu|,

for every m ≥ 0, vs ∈ Es
x and vu ∈ Eu

x , and all x ∈ Λ.
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hyperbolicity

hyperbolicity

f

Df

unstable
stable
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generation of horseshoes

generation of hyperbolic sets (horsesoes)

P

H(P) homoclinic class of P: closure of the transverse
intersections its invariant (stable and unstable) manifolds.

mixing, transitivity (dense orbits, recurrences....),
infinitely many periodic points,
in some cases H(P) fails to be hyperbolic...
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hyperbolic summary

general facts

There is a complete theory of hyperbolic systems:
geometric, topological, and ergodic (probabilistic) aspects.
Nonhyperbolic systems are quite frequent and many of
them exhibit “some (weak) hiperbolicity”
non-hyperbolicities: non-uniform, partial, singular,
dominated splittings....
A little hyperbolicity goes a long way (Pugh-Shub).
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beyond hyperbolicity

goals, questions

How to characterize the absence of (uniform)
hyperbolicity?
What structures cannot exist in the hyperbolic case but
must be present in its complement?
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Palis conjecture
Dichotomy: hyperbolicity versus cycles

cycles:

homoclinic tangencies (dim ≥ 2),
heterodimensional cycles (dim ≥ 3).

P

Q
P
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dichotomy conjecture (Palis)

some results
the conjecture holds for

circle maps (Peixoto),
C1 surface diffeomorphisms (Pujals-Sambarino),
C1 tame diffeomorphisms (Bonatti-D.).

tame diffeomorphisms
Those having stably finitely many homoclinic classes.
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critical and non-critical

typical non-hyperbolicities

ingredients of hyperbolicity:
uniform rate of expansion and contraction,
the angle between these directions is uniformly bounded
away from zero.

two types of non-hyperbolicty:

critical,
non-critical.
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critical dynamics

critical dynamics

critical dynamics:

models: Quadratic family, Hénon-like maps,
the rate expansion is not uniform, the angles between the
invariant directions are not uniform,
homoclinic tangencies extend the notion of a critical point.
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non-critical dynamics

non-critical dynamics:
models: Partially hyperbolic systems, heterodim. cycles
the effects of the contraction and expansion in a direction
overlap, there is a neutral/central direction,uniform
(bounded away from zero) angles.
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non-critical dynamics

non-hyperbolic homoclinic classes

H(P) may content saddles of index (dimension of stable
bundle) different from the one of P. Typical non-dynamical
feature.

Q P
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non-critical dynamics

non-hyperbolic homoclinic classes

Q P

caution: a homoclinic class whose saddles have all the same
index may be non-hyperbolic....
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non-critical dynamics

non-critical model: skew products

f0, f1 circle maps,

f0 East-West map, f1 irrational rotation.

σ : {0,1}Z → {0,1}Z horseshoe (shift map).

skew-product (partially hyperbolic map)

F : {0,1}Z × S1 → {0,1}Z × S1, F (α, x) = (σ(α), fα0(x)).
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robust cycles

heterodimensional cycles associated to hyperbolic sets

Λ and Σ hyperbolic sets, different indices

W s(Λ) ∩W u(Σ) 6= ∅ W u(Λ) ∩W s(Σ) 6= ∅.

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)

every g close to f has a cycle.

Kupka-Smale Theorem
generically, periodic points are hyperbolic and their invariant
manifolds are in general position (transversality).

thus: robust cycles involve some non-trivial hyperbolic set.
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non-hyperbolic features

non-hyperbolic features

some non-hyperbolic features
bifurcations of periodic orbits (saddle-node, flip, Hopf),
absence of shadowing properties,
cycles,
Newhouse-like phenomena: super-exponential growth of
the number of periodic points,
non-hyperbolic ergodic measures with large support,
non-existence of symbolic extensions.

question
Which dynamical features are typical of each form of non-
hyperbolicity?
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non-hyperbolic features

non-hyperbolic ergodic measures

diffeo f : M → M, dim M = n,

µ ergodic measure of f : µ(f−1(A)) = A implies µ(A) = 0,1,

there are Λ of full µ-measure,

χ1
µ ≤ χ2

µ ≤ · · · ≤ χn

for all x ∈ Λ and all v ∈ TxM, v 6= 0,

lim
n→∞

1
n

log ||Df n(v)|| = χi
µ, some i = 1, . . . ,n.

χi
µ is the i-th Lyapunov exponent of µ.

µ is non-hyperbolic if χi
µ = 0 for some i .
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non-hyperbolic features

symbolic extensions

f : X → X , homeomorphism,

(X , f ) has a symbolic extension if there exists a subshift (finitely
many symbols) (Y , σ) and a continuous surjective map
π : Y → X such that

π ◦ σ = f ◦ π.

(Y , σ) is called an extension of (X , f )

(X , f ) is a factor of (Y , σ).

remark (!!): super-exponential growth is compatible with the
existence of symbolic extensions.



hyperbolicity beyond hyperbolicity hyperbolicity vs. cycles weak hiperbolicities non-hyperbolic features

non-hyperbolic features

symbolic extensions

f : X → X , homeomorphism,

(X , f ) has a symbolic extension if there exists a subshift (finitely
many symbols) (Y , σ) and a continuous surjective map
π : Y → X such that

π ◦ σ = f ◦ π.

(Y , σ) is called an extension of (X , f )

(X , f ) is a factor of (Y , σ).

remark (!!): super-exponential growth is compatible with the
existence of symbolic extensions.



hyperbolicity beyond hyperbolicity hyperbolicity vs. cycles weak hiperbolicities non-hyperbolic features

non-hyperbolic features

symbolic extensions

f : X → X , homeomorphism,

(X , f ) has a symbolic extension if there exists a subshift (finitely
many symbols) (Y , σ) and a continuous surjective map
π : Y → X such that

π ◦ σ = f ◦ π.

(Y , σ) is called an extension of (X , f )

(X , f ) is a factor of (Y , σ).

remark (!!): super-exponential growth is compatible with the
existence of symbolic extensions.



hyperbolicity beyond hyperbolicity hyperbolicity vs. cycles weak hiperbolicities non-hyperbolic features

non-hyperbolic features

symbolic extensions

f : X → X , homeomorphism,

(X , f ) has a symbolic extension if there exists a subshift (finitely
many symbols) (Y , σ) and a continuous surjective map
π : Y → X such that

π ◦ σ = f ◦ π.

(Y , σ) is called an extension of (X , f )

(X , f ) is a factor of (Y , σ).

remark (!!): super-exponential growth is compatible with the
existence of symbolic extensions.



hyperbolicity beyond hyperbolicity hyperbolicity vs. cycles weak hiperbolicities non-hyperbolic features

non-hyperbolic features

symbolic extensions

f : X → X , homeomorphism,

(X , f ) has a symbolic extension if there exists a subshift (finitely
many symbols) (Y , σ) and a continuous surjective map
π : Y → X such that

π ◦ σ = f ◦ π.

(Y , σ) is called an extension of (X , f )

(X , f ) is a factor of (Y , σ).

remark (!!): super-exponential growth is compatible with the
existence of symbolic extensions.



hyperbolicity beyond hyperbolicity hyperbolicity vs. cycles weak hiperbolicities non-hyperbolic features

domination

domination (i)

f : M → M, diffeo., M compact and closed,

Λ: f -invariant (f (Λ) = Λ) compact set.

dominated splitting: TΛM = E ⊕ F , Df -invariant and there is m
with

|Df m(v)|
|(Df m(w))|

≤ 1
2

for every unitary vectors v ∈ Ex and w ∈ Fx and all x ∈ Λ.
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domination

domination (iii)

splitting with several bundles: TΛM = E1 ⊕ · · · ⊕ Ek .

domination: TΛM = (E1 ⊕ · · · ⊕ Ej)⊕ (Ej+1 ⊕ · · · ⊕ Ek ) for all
j < k .

partial hyperbolicity: some of the extremal bundles is
hyperbolic.

finest dominated splitting: the splitting of the bundles can not be
decomposed in a dominated way (indecomposable bundles).
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finest dominated splitting

types of splittings

for simplicity: dimension of M is three

possibilities for the finest dominated splitting of a homoclinic
class.

non-critical case: three bundles Es ⊕ Ec ⊕ Eu, Es and Eu

hyperbolic.
critical case:

two bundles: Es ⊕ Ecu or Ecs ⊕ Eu, Es and Eu

one-dimensional and hyperbolic.
non-existence.
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dynamical features and splittings

non-hyperbolic features

C1 generic setting (homoclinic classes with saddles of different
indices):

non-hyperbolicity always implies:

supergrowth of the the number of periodic points
(Bonatti-D.-Fisher),
no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D.,
Bonatti-D-Turcat),
robust heterodimensional cycles (Bonatti-D.),
existence of non-hyperbolic ergodic measures (with
uncountable support) (D.-Gorodetski).
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non-critical case

further information, non-critical case

Ec one-dimensional

C1-generically:
existence of symbolic extensions
(D-Fisher-Pacifico-Vietez),
non-hyperbolic measures with full support
(Bonatti-D.-Gorodetski).

higher dimensions: if Ec splits into 1D bundles....

existence of symbolic extensions
(D-Fisher-Pacifico-Vietez),
existence non-hyperbolic measures with full support and
zero Lyapunov exponents.
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critical and super-critical cases

further information, critical case

Ec two-dimensional

C1-generic non-existence of symbolic extensions
(D-Fisher-Pacifico-Vietez, Asaoka) based on
Downarowicz-Newhouse,
robust homoclinic tangencies (Bonatti-D.).
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critical and super-critical cases

further information, super-critical case

non-dominated

C1-generic non-existence of symbolic extensions,
robust homoclinic tangencies,
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summary

summarizing table

dimension three:

dynamics/splitting 3 bundles 2 bundles non-exist.
• Robust tangencies No Yes Yes
• Robust het. cycles Yes Yes Yes

• non-hyperbolic measures Yes Yes Yes
- full support Yes Yes? Yes?

- # zero exponents 1 2? 3?
• symbolic extensions Yes No No
• ∞-sinks/sources No depend Yes
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