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Abstract

In this paper, we propose a model for the destruction of three-dimensional horse-
shoes via heterodimensional cycles. This model yields some new dynamical features.
Among other things, it provides examples of homoclinic classes properly contained
in other classes and it is a model of a new sort of heteroclinic bifurcations we call
generating.

1 Introduction

A relevant problem in dynamics is to describe the transition from hyperbolic to non-
hyperbolic regimes. An archetypal example of this transition can be found in the process
of creation/destruction of horseshoes. In the destruction of horseshoes in two dimensions,
the transition from the hyperbolic to the persistently non-hyperbolic regimes corresponds
to the passage from non-critical to critical dynamics (creation of tangencies), see [8,
Preface]. But in higher dimensions, there are transitions between these two persistent
regimes which do not involve critical behavior. The dynamics is partially hyperbolic and
the lack of hyperbolicity follows from coexistence in the same transitive piece of dynamics
(a homoclinic class, see the precise definition below) of saddles having different indices
(i.e., dimension of the unstable bundle).

The goal of this paper is the study of the destruction of three dimensional horseshoes
via heterodimensional cycles which yields some new dynamical features in bifurcation
theory. We construct a model diffeomorphism F having a horseshoe Λ with a uniformly
hyperbolic splitting into three one-dimensional spaces Es⊕Ec⊕Eu, where Es and Ec are
contracting directions (the contraction in Es is stronger than the one in Ec) and Eu is
expanding. This splitting is defined in a neighborhood U of the horseshoe Λ and there is
some saddle Q ∈ U (which does not belong to Λ) such that Ec is an expanding direction
of Q (thus the saddle Q has index two). Hence the dynamics of F in U is partially
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hyperbolic and the non-wandering set of F in U is the (disjoint) union of the horseshoe Λ
and the saddle Q. The partially hyperbolic splitting prevents both Hopf and homoclinic
bifurcations (tangencies).

We consider a one-parameter family of diffeomorphisms (Ft)t∈[−ǫ,ǫ] with F1 = F . We
see that, for every t > 0, the diffeomorphism Ft has a horseshoe Λt, which is the continu-
ation of Λ = Λ1. Indeed the horseshoe Λt is the homoclinic class H(P, Ft) of a saddle P ,
i.e. the closure of the transverse intersections of the invariant manifolds of P . Moreover,
for t > 0, the non-wandering set of Ft in U is hyperbolic and equal to the disjoint union of
Q (the saddle of index two above) and Λt (a hyperbolic transitive set whose saddles have
index one). For t = 0, there is a bifurcation, the diffeomorphism F0 has a heterodimen-
sional cycle (see definition in Section 1.2) associated to the saddle P of the old horseshoe
and the saddle Q: a transverse homoclinic point Xt of P (defined for all positive t and
depending continuously on t) of the horseshoe becomes a heteroclinic point X0 of P and
Q (an intersection of the unstable manifold of P and the stable one of Q). Some relevant
features in bifurcation theory of our model that we want to point out are the following:

1. The bifurcation occurs inside a homoclinic class: the heteroclinic point X0 responsi-
ble for the bifurcation is a non-transverse heteroclinic point accumulated by trans-
verse homoclinic points of P . We shall call internal these type of bifurcations (see
Section 1.2 for a more explicit discussion on this topic).

2. At the bifurcation parameter t = 0, the homoclinic class of Q is properly contained
in the homoclinic class of P.

3. Also, at the bifurcation parameter t = 0, there is an explosion of the dynamics,
meaning that the old horseshoe Λt = H(P, Ft) is a factor of H(P0, F0). In other
words, there is a continuous, surjective but non-injective map π : H(P0, F0) → Λ,
which is a semi-conjugacy between the corresponding dynamics. We call these type
of bifurcation as generating dynamics, see Section 1.3. In fact, the dynamics of the
non-hyperbolic homoclinic class H(P0, F0) is extremely rich and contains infinitely
many central intervals coming from explosions of old homoclinic points.

4. After the bifurcation, i.e. for t < 0, the homoclinic classes of P and Q coincide
(phenomenon of intermingled homoclinic classes), and contain infinitely many cen-
tral segments (parallel to the central direction).

We observe that an important tool of this paper is the study of 1-dimensional one-
parameter families of systems of iterated functions which describe the dynamics in the
central direction. These one dimensional maps are obtained by considering the quotient
dynamics along the strong stable and strong unstable directions. In fact, most of the prop-
erties of the diffeomorphisms (as existence of periodic points, hyperbolicity, and creation
of cycles) are obtained using these families.

We will give in Section 1.1 some historical account of bifurcation of horseshoes and
discuss in Sections 1.2 and 1.3 some aspects of bifurcation theory related to our results.
Our main results are stated in Section 1.4. The precise definition of the model is in
Section 2.
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1.1 Destruction of horseshoes

In dimension two, the creation of (dissipative) horseshoes, as the ones in Figure 1, accom-
plishes infinitely many bifurcations including homoclinic tangencies associated to saddles
and loss of hyperbolicity of saddles. This last sort of bifurcation includes saddle-node
and Hopf ones as well as a cascade of period doubling bifurcations, see [43]. Another
relevant feature is that the creation of horseshoes yields, together with infinitely many
orbit-creation, infinitely many orbit-annihilation of periodic points, see [28]. This situa-
tion is different than for the quadratic family of the interval, where periodic orbits are
created monotonically, see [34]. For a survey of this subject see [38, Chapter 3].

creation destruction

Figure 1: Creation/destruction of a horseshoe

Related to these constructions, there is the problem of the first bifurcation in the
destruction of a horseshoe. Such a first bifurcation depends on global properties of the
horseshoe as, in very rough terms, the curvature of the invariant manifolds, the symbolic
dynamics (number of symbols) of the horseshoe, and the rate of expansion/contraction
of the map. For instance, [2] gives examples where such a first bifurcation is a period
doubling one. On the other hand, [29, 39] illustrate the case where the first bifurcation
is a homoclinic bifurcation such that the non-transverse homoclinic point is a limit point
(one calls these bifurcations internal tangencies inside homoclinic classes). In fact, a
key aspect of this sort of bifurcations is whether or not the non-transverse intersection
responsible for the failure of hyperbolicity is a limit point. Note that non-transverse
homoclinic intersections are non-wandering points, the relevant fact here is that this non-
transverse intersection is a limit point inside some homoclinic class.

A second prototypical example of creation/destruction of hyperbolic sets is given by
the Hénon-like maps, that is, perturbations of the Hénon family

Ha,b(x, y) = (1 − a x2 + y, b x).

Hénon and Hénon-like families have been extensively studied since the publication of [15]
claiming that the non-wandering sets of these maps are hyperbolic for large a and small
b > 0. This leads to the description of the boundary of hyperbolicity for these families.
For Hénon families, [3, 4] showed that there is a first bifurcation parameter a⋆ (fix small
b, Ha,b is hyperbolic for all a > a⋆) corresponding to a homoclinic tangency. In [11], the
same question was addressed for Hénon-like families, considering a geometrical approach.
On the one hand, as in [29, 39], the orbit corresponding to the tangency belongs to the
limit set (thus this set is not hyperbolic). On the other hand, for such a parameter a⋆ all
periodic orbits are uniformly hyperbolic (in fact, we have more: all Lyapunov exponents
of all measures supported on the non-wandering set are uniformly bounded away from
zero), see [11].
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Finally, a third mechanism for the destruction of horseshoes was proposed in [44, 41]:
the so-called saddle-node horseshoes depicted in Figure 2 and whose dynamics is described
in [14]. In this setting, a saddle of the horseshoe loses its hyperbolicity (it becomes a
saddle-node) and it disappears thereafter. In some cases, this bifurcation may be isolated
(see for instance [9], which is a reformulation of the derived from Anosov construction in
[42] to the horseshoe context). But in some cases this sort of bifurcation leads to a string
of bifurcations (including homoclinic tangencies), see [24, 26, 13] after [37].

Saddle-node horseshoes exemplify in a rather precise way the phenomena of annihila-
tion and creation of dynamics. On the one hand, the saddle-node bifurcation carries the
subsequent annihilation of infinitely many hyperbolic periodic orbits of arbitrarily large
period of the old horseshoe. On the other hand, due to global aspects of the dynamics
(creation of homoclinic tangencies) new periodic orbits are generated. An analysis of the
balance between creation and annihilation of dynamics in terms of entropy can be found
in [18, 31]. For a survey on this subject see [19].

Figure 2: A saddle-node horseshoe

1.2 Heterodimensional cycles and homoclinic classes

Robustly transitive non-hyperbolic but partially hyperbolic systems were first obtained
in [40], in dimension four, and later in [33], in dimension three. Next, motivated by
the constructions in [17], [6] introduced the notion of blender which is the basis for the
systematic construction of (non-hyperbolic) transitive sets persistently containing saddles
of different indices. This corresponds to the concept of unstable dimension variability in
[30].

The blender constructions are related to the existence of heterodimensional cycles.
We say that a diffeomorphism F has a heterodimensional cycle if there are saddles P
and Q of F having different indices whose invariant manifolds are related in a cyclic
way (W s(P, F ) ∩ W u(Q, F ) 6= ∅ and W u(P, F ) ∩ W s(Q, F ) 6= ∅). This sort of cycles
can only occur in dimension three or higher. These cycles were introduced in [36] and
systematically studied in the series of papers [17, 16, 20, 21, 22, 23].

In this paper, we describe the destruction of three dimensional horseshoes via het-
erodimensional cycles. Our construction is mostly motivated by the results in [39, 11]
(the destruction of two-dimensional horseshoes keeping the hyperbolicity of the periodic
points, and exhibiting internal non-transverse intersection). Our model consists of a one-
parameter family of partially hyperbolic diffeomorphisms (Ft)t∈[−ǫ,ǫ] within a fixed open
set U. We see that, for every t > 0, the diffeomorphism Ft has a horseshoe Λt, which is
the continuation of a hyperbolic horseshoe Λ = Λ1 and the homoclinic class of a given
saddle P . Moreover, for t > 0, the non-wandering set of Ft in U is hyperbolic and equal
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to the disjoint union of the point Q (a saddle of index two) and Λt (a hyperbolic transitive
set whose saddles have index one). For t = 0, there is a bifurcation, the diffeomorphism
F0 has a heterodimensional cycle associated to a saddle P of the old horseshoe and the
saddle Q: a transverse homoclinic point Xt of P of the horseshoe becomes a heteroclinic
point X0 of P and Q. This process is depicted in Figure 5. The arc (Ft)t is constructed
in Section 2. A key point here is that, for the bifurcating parameter t = 0, there is a
transitive set Λ0 (the homoclinic class of P ) containing the heteroclinic point X0 and the
saddles Q and P with different indices. The set Λ0 can be viewed as a partially hyperbolic
horseshoe.

Another relevant point here, is that this bifurcation leads a string of secondary bi-
furcations (in fact, for all t < 0 the diffeomorphism Ft is not hyperbolic) which do not
include neither homoclinic tangencies nor Hopf bifurcations. These secondary bifurcations
include saddle-node and flip ones as well as heterodimensional cycles.

As we said before, a relevant point in bifurcations via tangencies or heterodimensional
cycles is whether or not the non-transverse orbits responsible for them are limit points. In
the bifurcations considered in this paper, the non-transverse intersections belong to the
homoclinic class of a saddle. Thus this sort of bifurcation can be better viewed as internal
non-transverse bifurcations of homoclinic classes. We now discuss these bifurcations.

Recall that the homoclinic class of a saddle P of a diffeomorphism F , denoted by
H(P, F ), is the closure of the transverse intersections of the invariant manifolds of the
orbit of P . Homoclinic classes are transitive sets containing a dense subset of hyperbolic
periodic points of the same index as P . The homoclinic class of a saddle P can be also
defined as the closure of the saddles homoclinically related to P . Recall that two saddles
P and Q are homoclinically related if the invariant manifolds of their orbits meet trans-
versely: the stable manifold of the orbit of P transversely meets the unstable manifold
of the orbit of Q and vice versa. These properties of homoclinic classes can be found, for
instance, in [35]. We note that the homoclinic class of a saddle P may contain saddles
(with the same or different index as P ) which are not homoclinically related to it. In fact,
the bifurcations considered in this paper provide examples of such homoclinic classes.

We say that the arc of diffeomorphisms (Ft)t∈[−ǫ,ǫ] exhibits an internal non-transverse
bifurcation of a homoclinic class at t = 0 if, for every parameter t, there is a saddle Pt

depending continuously on t (for simplicity, we omit the dependence of Pt on t) such that,
for every t ∈ (0, 1], the homoclinic class H(P, Ft) is a hyperbolic set, and for t = 0, there
is a non-transverse intersection between saddles of H(P, F0) which is inside of the class.
This implies that the homoclinic class H(P, F0) is non-hyperbolic.

1.3 Annihilating and generating bifurcations

We consider two criteria for classifying internal non-transverse bifurcations of homoclinic
classes. The first one follows [36] and takes into account the type of non-transverse
intersection: equidimensional, if the saddles involved in the non-transverse intersection
have the same index, and heterodimensional otherwise. For instance, the bifurcations
in [39] depicted in Figure 3 are equidimensional while the ones studied in our paper are
heterodimensional.

We introduce a second classification related to the symbolic dynamics of the bifurcating
homoclinic class which is motivated by the paper [27] about symbolic extensions. Suppose
that for the parameters t ∈ (0, 1] corresponding to hyperbolic dynamics, there is a shift
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space (Σ, ς) with finite alphabet and a homeomorphism πt : Σ → H(P, Ft) conjugating Ft

in H(P, Ft) to ς in Σ, i.e., Ft ◦ πt = πt ◦ ς. The bifurcation at t = 0 annihilates dynamics
if there is a continuous surjection π0 : Σ → H(P, F0) which is not one-to-one such that
F0 ◦ π0 = π0 ◦ ς. The bifurcation at t = 0 generates dynamics if there is a continuous
one-to-one map π0 : Σ → H(P, F0) which is not onto such that F0 ◦π0 = π0 ◦ ς. In the case
of generating bifurcations, the dynamics of the bifurcating homoclinic class is richer than
the one of the shift (i.e., the dynamics of the homoclinic classes before the bifurcation). In
the case of annihilating bifurcations we have the opposite situation. Neutral bifurcation
are defined in the obvious way.

The bifurcations in [39, 32] described in Figure 3 are annihilating ones. Dynamically,
these bifurcations correspond to the collision of two transverse homoclinic points of a
horseshoe to a non-transverse one. This collision carries identifications in the symbolic
level, therefore some annihilation of dynamics. More precisely, for every t ∈ (0, 1], the
diffeomorphisms Ft have a horseshoe Λt (the homoclinic class of a saddle P ) conjugate to
the complete shift of three symbols, ς : Σ → Σ (we let Σ = {0, 1, 2}Z). For the bifurcation
t = 0, the horseshoe Λ0 = H(P, F0) has an internal homoclinic tangency which is inside
it. Using the notation above, for t = 0, the map π0 : Σ → Λ0 is onto but it fails to be
one-to-one (i.e., π0 is a semi-conjugacy): two different sequences of Σ correspond now to
the same point (a non-transverse homoclinic point) of Λ0.

collisionunfolding

P P P

Figure 3: Annihilating bifurcation

Finally, the saddle-node horseshoes discussed in Section 1.1 and depicted in Figure 2
provide examples of neutral bifurcations.

The bifurcations in our paper are generating ones and are discussed in the next section.

1.4 Description of the dynamics

We next describe the dynamical features of our three dimensional model family Ft (see
Theorem 1 for the precise statement). The homoclinic classes H(P, Ft) are hyperbolic
and conjugate, for t > 0, to the shift on Σ11, the space of sequences of symbols {0, 1}
with forbidden block {1, 1}. For the bifurcation parameter t = 0, the homoclinic class
H(P, F0) has an internal non-transverse bifurcation corresponding to a heterodimensional
cycle: there is a saddle Q ∈ H(P, F0) of different index of P such that P and Q are
related by a heterodimensional cycle and there are non-transverse intersections between
the unstable manifold of P and the stable one of Q which are inside the homoclinic class
H(P, F0). Moreover, using the notation above, for t = 0, the map π0 : Σ11 → H(P, F0) is
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one-to-one but it is not onto. In fact, in the next paragraph we see that the dynamics of
H(P, F0) is extremely richer than the one of Σ11.

In fact, π−1
0 naturally extends to an onto map ̺ : H(P, F0) → Σ11, with ς ◦ ̺ = ̺ ◦F0,

which assigns infinitely many points of H(P, F0) to the same sequence, for an infinite
number of sequences of Σ11. In very rough terms, the dynamics of H(P, F0) explodes in
the central direction: there are infinitely many central segments of H(P, F0) which are
mapped by ̺ to the same sequence of Σ11. These points correspond to an explosion of a
transverse homoclinic point of P . We now clarify this issue.

We will prove that, for the bifurcating diffeomorphism F0, there is an invariant central
curve γ ⊂ W s(P, F0) ∩ W u(Q, F0) (see Figure 4) joining P and Q and contained in the
homoclinic class of P . This implies, in particular, that Q ∈ H(P, F0). The segment γ
projects to the same sequence of Σ11 (the sequence corresponding to the saddle P ). Using
this fact, we will get infinitely many central heteroclinic segments with a similar property
as follows. Consider the strong unstable manifold W uu(Q, F0) of Q (the unique invariant
manifold tangent at Q to the strong unstable bundle Eu). We call a transverse intersection
of the stable manifold W s(P, F0) of P and the strong unstable manifold W uu(Q, F0) of
Q a fake homoclinic point of P . We prove that there are (infinitely many) heteroclinic
curves η contained in the intersection between W s(P, F0) and W u(Q, F0) whose extremes
are a fake homoclinic point of P and either a true transverse homoclinic point of P or a
heteroclinic point (associated to P and Q). Each curve η is contained in the homoclinic
class of P and projects to the same sequence of Σ11. In Figure 4 there is depicted a
heteroclinic curve η bounded by a fake homoclinic point Y of P and a heteroclinic point
X.

X Y
η

Q γ P

Figure 4: Fake homoclinic points and heteroclinic segments

Note that the coexistence of saddles of different indices in the same homoclinic class
prevents its hyperbolicity. Thus, since Q ∈ H(P, F0), that homoclinic class is non-
hyperbolic. Nevertheless, we prove that every periodic point of the non-hyperbolic ho-
moclinic class H(P, F0) is hyperbolic, although the Lyapunov exponents of the periodic
points accumulate to zero. It is interesting to compare this result with the destruction
of hyperbolic sets in the Hénon family in [11] and of horseshoes with internal tangen-
cies in [10] (see Figure 3), where the Lyapunov exponents of the periodic points of the
non-hyperbolic horseshoe are uniformly bounded away from zero.

Finally, for the bifurcating diffeomorphism F0, the homoclinic class H(Q, F0) is trivial
and thus properly contained in the homoclinic class of P . This gives, as far as we know, the
first example of two saddles whose homoclinic classes where one is properly contained in
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the other one: H(Q, F0) = {Q} ⊂ H(P, F0). Recall, that for C1-generic diffeomorphisms
(i.e., diffeomorphisms in a residual subset of Diff1(M)) non-disjoint homoclinic classes
coincide, see [12, 5]. For examples of overlapping homoclinic classes (each class is not
contained in the other one and the classes have non-empty intersection) see [25].

We also study the dynamics arising from the unfolding of the cycle. Recall that the
heteroclinic orbits associated to P and Q are generated as follows. We fix local invariant
manifolds W s

loc(Q, Ft) of Q and W u
loc(P, Ft) of P . For every t > 0, there is a transverse

homoclinic point Xt ∈ W u
loc(P, Ft) of P , depending continuously on t. The points Xt

converge to some heteroclinic point X0 ∈ W s
loc(Q, F0) ∩ W u

loc(P, F0), see Figure 5. The
cycle associated to P and Q generates a string of secondary bifurcations for t < 0. For
instance, transverse homoclinic points of P become heteroclinic intersections between
W u(P, Ft) and W s(Q, Ft), thus generating new heterodimensional cycles. In Figure 5, Yt

is a transverse homoclinic point for all t ∈ (t1, t2] which generates a secondary heterodi-
mensional cycle for t1. Moreover, infinitely many saddle-node and flip bifurcations also
occur throughout the unfolding.

secondary bifurcationhyperbolicity

X0Xt2
Y0

Yt2
Yt1

t1 < 0t2 > 0 t = 0

QQQ P PP

Figure 5: Generating bifurcation through a heterodimensional cycle

We also prove that, for every small t < 0, the homoclinic classes of P and Q coincide.
Therefore these classes are not hyperbolic. This follows from a much stronger fact: the
two dimensional stable manifold of P is contained in the closure of the one-dimensional
stable manifold of Q. This is a version of the so-called distinctive property of blenders in
[8, Chapter 6], that follows using a blender-like construction motivated by [6, 17]. For
instance, this construction gives that, for t < 0, the whole central curve γ joining P and
Q is contained in H(Q, Ft). In fact, there are infinitely many curves joining a homoclinic
point of Q and a homoclinic point of P contained in H(Q, Ft). These curves are analogous
of the central curves η above joining fake and true homoclinic points of P .

Finally, let us observe that there are two sort of heterodimensional cycles, twisted
and non-twisted, according to the geometry of the invariant manifolds of the saddles
in the cycle. This classification was proposed in [1]. The unfolding of twisted cycles
generate both saddle-node and flip bifurcations of periodic points, while the non-twisted
ones a priori only accomplish saddle-node bifurcations. The heterodimensional cycles we
consider in this paper are twisted ones. Twisted heterodimensional cycles were conjectured
to cause a crisis of chaotic attractors in [1], where numerical evidence of this is provided.

This paper is organized as follows. In Section 2, we construct the arc of diffeomor-
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phisms (Ft)t∈[−ǫ,ǫ]. Roughly speaking, the diffeomorphisms of the family (Ft)t∈[−ǫ,ǫ] are
the skew-product of a hyperbolic linear dynamics of saddle type and two interval maps
f0 = f0,t and f1,t. The central dynamics of the diffeomorphisms Ft is obtained considering
(suitable) compositions of these two maps of the interval.

More precisely, we consider a pair of interval maps f0 and f1, the map f0 has two
fixed points 0 (repelling) and 1 (attracting) and f1 is an affine contraction. The effect
of the parameter t consists in considering translations of f1 by t (i.e. f1,t = f1 + t). We
consider compositions of the maps f0 (which does not depend on t) and f1,t such that two
consecutive compositions of f1,t are forbidden. That is the reason because we consider
the shift space Σ11 to describe the hyperbolic dynamics (in fact, our dynamics is modeled
over that shift space). In this way, we get a system Ft of iterated functions whose relevant
dynamical properties (as existence of periodic orbits, hyperbolicity-like properties, and
explosion of the dynamics in the central direction) are translated to similar properties of
Ft. In Section 3, which is the main technical part of the paper, we study these systems.
In Section 3.1, we analyze the system Ft for t > 0 and state its hyperbolic properties. In
Section 3.2, we study the system for t = 0 and obtain the (non-uniform) hyperbolicity for
the periodic points of Ft. In Section 3.3, we prove the existence of dense orbits for the
system Ft for t close to 0. Finally, in Section 3.4, we prove that the system Ft satisfies an
expanding property.

In Section 4, we translate properties of the system Ft to the diffeomorphisms Ft in
terms of existence of periodic and homoclinic points and cycles. Finally, in Sections 5, 6,
and 7, we use the results about the system Ft to prove the main result in this paper.

2 The model family of diffeomorphisms

In this section, we construct the model family Ft and state the main result.
Consider in R

3 the cube R = [0, 1] × [−δ, 1 + δ] × [0, 1], for a small δ > 0, and the
sub-cubes R0 = [0, 1] × [−δ, 1 + δ] × [0, 1/6], and R1 = [0, 1] × [−δ, 1 + δ] × [5/6, 1] of R.
We consider a family of horseshoe maps Ft : R → R

3, t ∈ [−ǫ, ǫ], small ǫ > 0, on the cube
as follows. The restrictions Fi,t of Ft to Ri, i = 0, 1, are defined by:

• F0,t(x, y, z) = F0(x, y, z) = (λ0x, f(y), β0z), with 0 < λ0 < 1/3, β0 > 6, and f is the
time one map of a vector field to be defined in the sequel;

• F1,t(x, y, z) = (3/4− λ1x, σ(1− y) + t, β1(z − 5/6)), with 0 < λ1 < 1/3, 3 < β1 < 4,
and σ close to 1/4; and

• points (x, y, z) /∈ R0 ∪ R1 are mapped by Ft outside of R, i.e., Ft(x, y, z) /∈ R.

The map f : R → R is defined as the time one of the vector field

x′ = x(1 − x).

Note that f maps diffeomorphically the interval [0, 1] into itself. This map f is depicted
in Figure 6.

Observe that f(0) = 0 and f(1) = 1, and, for every y 6= 0 and n ∈ Z, we have

fn(y) =
1

1 −
(

1 − 1
y

)

e−n
. (1)
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f

0 1

Figure 6: The central map f

We also have

(fn)′(y) =

e−n

y2

(

1 −
(

1 − 1
y

)

e−n
)2 =

e−n

y2
(fn(y))2 . (2)

Observe that f ′(0) = e and f ′(1) = 1/e. Therefore, as f(0) = 0 and f(1) = 1, for every
t, the point Q = (0, 0, 0) is a fixed saddle of index 2 of Ft, and the point P = (0, 1, 0) is a
fixed saddle of index 1 of Ft.

By construction, Ft(R0) intersects both R0 and R1 (and such intersections are cubes).
Moreover, Ft(R1) only intersects R0 (and the intersection also is a cube). Figures 7 and 8
describes the dynamics of the diffeomorphisms Ft in the cube R. In this way, to each point
X whose orbit is contained in the cube R, we associate a sequence ι(X) ∈ Σ = {0, 1}Z

defined as follows: ιk = j if Xk = F k
t (X) ∈ Rj . By comments above (there is no

transition from R1 to R1), the sequence ι(X) is in Σ11 (the subset of {0, 1}Z of sequences
with forbidden block 11). We say that ι(X) is the itinerary of X.
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Figure 7: Bifurcating horseshoe

Theorem 1. Consider the arc of diffeomorphisms (Ft)t∈[−ǫ,ǫ] above. The dynamics of Ft

in the rectangle R satisfies the following properties:

A) Hyperbolic dynamics (t > 0) : For every t > 0 small enough, the limit set of Ft in
R is the disjoint union of two hyperbolic sets: the saddle Q and the homoclinic class
of P . Moreover, the dynamics of Ft in the homoclinic class H(P, Ft) is conjugate
to the shift ς : Σ11 → Σ11.

B) Bifurcating dynamics (t = 0) :
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Figure 8: Projection of the twisted horseshoe

1. The diffeomorphism F0 has a heterodimensional cycle associated to the saddles
P and Q. Moreover, there is a non-transverse intersection between W s(Q, F0)
and W u(P, F0) whose orbit is contained in H(P, F0).

2. The homoclinic class of Q is trivial and is contained in the non-trivial homo-
clinic class of P . In particular, H(P, F0) is not hyperbolic.

3. There is a surjection

̺ : H(P, F0) → Σ11, with ̺ ◦ F0 = ς ◦ ̺,

and infinitely many central segments I = {x} × [a, b] × {z} of W s(P, F0) ∩
W u(Q, F0) such that every I is contained in the homoclinic class of H(P, F0)
and ̺(y1) = ̺(y2) for every pair of points y1, y2 ∈ I.

C) Robustly non-hyperbolic dynamics after the bifurcation (t < 0) : For every
t < 0 close to 0, the homoclinic classes H(P, Ft) and H(Q, Ft) coincide and so
they are not hyperbolic. Moreover, these homoclinic classes contain infinitely many
central segments of W s(P, F0) ∩ W u(Q, F0).

Remark 2.1. Using the notation introduced in Section 1.2, by item 1 in B, the bifur-
cation at t = 0 is an internal non-transverse bifurcation of a homoclinic class. Using
the terminology in Section 1.3, items A and 3 of B mean that the bifurcation is of the
generating type.

Remark 2.2. In our construction, see Remark 4.3, we prove that the Hausdorff dimen-
sion of the homoclinic class H(P, Ft) is at least one for every |t| close to 0 (since for
t ≤ 0 the homoclinic class H(P, Ft) contains intervals, it is obvious for t ≤ 0). We ob-
serve that in our constructions, by shrinking R0 and R1 in the x and z-directions, we
can take the expansion constants β0 and β1 in the z-direction arbitrarily large and the
contraction constants λ0 and λ1 in the x-direction arbitrarily close to 0. This suggests the
possibility of considering a model where the initial hyperbolic homoclinic class H(P, Ft0),
where t0 is possibly bigger than ǫ, has Hausdorff dimension strictly less than one. Our
construction indicates that the Hausdorff dimension of H(P, Ft) increases as t decreases
and becomes one before the bifurcation. In the context of heterodimensional cycles, the
relation between fractal dimensions and bifurcations is not well understood. We note
that for homoclinic bifurcations of surface diffeomorphisms these fractal dimensions play
a key role for determining the dynamics, see [38]. Our construction may suggest some
link between bifurcations and fractal dimensions in the heterodimensional setting.
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3 Systems of iterated functions

Consider δ > 0 and σ as in Section 2 and for small |t|, consider the maps

f0,t, f1,t : [−δ, 1] → R

defined by
f0,t(y) = f(y) and f1,t(y) = σ (1 − y) + t.

The dynamics of Ft in the central direction is modeled by a system of iterated functions
generated by f0,t and f1,t. More precisely, given any X = (xs

0, x
c
0, x

u
0) ∈ R whose forward

orbit is contained in R, we consider its forward itinerary ι+(X), with ι+(X) ∈ Σ+
11 ⊂

{0, 1}N, defined as follows

ι+k (X) = j if Xk = F k
t (X) ∈ Rj .

Consider k ≥ 0 and let Xk = F k
t (X) = (xs

k, x
c
k, x

u
k). By the definition of Ft, the central

coordinate xc
k, of Xk is

xc
k = fik−1,t ◦ · · · ◦ fi0,t(x

c
0), where ι+(X) = (ik) .

Given a sequence (in) ∈ Σ+
1,1, for each given k ≥ 0 we consider the k-block ̺k =

̺k(in) = [i0, i1, . . . , ik] associated to (in). To this block we associate the map

Φ̺k ,t = fik,t ◦ fik−1,t ◦ · · · ◦ fi0,t ,

which is defined in some interval (see the discussion below). We now consider the system
of iterated functions (s.i.f.) Ft generated by f0,t and f1,t defined as follows

Ft = {Φ̺k ,t : ̺k is a block of size k of Σ+
11 and k ∈ N}.

The goal of this section is to obtain properties for the s.i.f. Ft which will be translated
into properties of the map Ft. When t ≥ 0 the interval [0, 1] is invariant by Ft (i.e.,
Φ̺k ,t([0, 1]) ⊂ [0, 1]). On the other hand, for t < 0 the interval [0, 1] is not anymore
invariant. We will see that for t < 0, for each block ̺k, there is a maximal interval I̺k

where Φ̺k,t is defined. This is one of the reason because the analysis of the dynamics of
Ft is different for t ≥ 0 and t < 0.

In Section 3.1, we obtain in Proposition 3.1 a contraction property for the orbits of Ft

for t > 0 (except for the fixed point 0 corresponding to Q). In Section 5, we see that this
property implies the hyperbolicity of the limit set of Ft: this set consists of the saddle Q
and the homoclinic class of P . The contracting property of Ft implies that the direction
of the y-axis is a contracting direction of the homoclinic class of P . Since the direction of
the x-axis is uniformly contracting and the direction of the z-axis is uniformly expanding
we obtain the hyperbolicity of the homoclinic class of P for t > 0.

In Section 3.2, we prove that, for t = 0, all periodic points of F0 are hyperbolic (in
fact, any periodic point different from 0 is contracting). However, this hyperbolicity is
not uniform.

In Section 3.3, for t close to 0, we get a subset S of the orbit of 1 by Ft which is
dense in [t, 1], see Proposition 3.7. We will see that the subset S corresponds to central
coordinates of transverse homoclinic points of P (thus points in H(P, Ft)). This is the

12



key step to show that H(P, F0) contains infinitely many central segments (see Section 6).
This is also a key step to prove that for small t ≤ 0 the homoclinic class of Q is contained
in the one of P (see Section 7.1).

Finally, we prove, in Section 3.4, that, for t < 0, the s.i.f. Ft satisfies an expanding
property (see Proposition 3.15). We will see, in Section 7.2, how this property implies
that the homoclinic class of P is contained in the homoclinic class of Q. Therefore
H(P, Ft) = H(Q, Ft), for every small t < 0.

3.1 Hyperbolic systems of iterated functions (t > 0)

In this section, for t > 0, we study the dynamics of the s.i.f. Ft in the interval. We begin
by observing that, for small t > 0, the interval [t, 1] is invariant by Ft: f0,t([t, 1]) ⊂ [t, 1]
and f1,t([t, 1]) ⊂ [t, 1], therefore Φ̺k,t([t, 1]) ⊂ [t, 1] for every block ̺k of Σ+

11.
The main technical result of this section is the following:

Proposition 3.1 (Contraction property). Consider t > 0. For every y ∈ [t, 1] and every
sequence (in) of Σ+

11 it holds that

lim
k→∞

|Φ′
̺k,t(y)| = 0, where ̺k = ̺k(in).

We say that a point p is a periodic point of the system Ft if there is a block ̺k of
Σ+

11 such that Φ̺k ,t(p) = p and the concatenation of ̺k with itself is a block of Σ+
11 (in

other words, the block ̺k either starts or ends by 0). In this case, we say that ̺k is a
periodic block of the periodic point p. Note that a point p may be periodic for different
blocks. We say that p is a contracting periodic point for the s.i.f. Ft if there are constants
C = C(p) > 0 and κ = κ(p) < 1 such that Φ′

̺k,t(p) ≤ Cκ
k. We say that the periodic

points of Ft are uniformly contracting if the constants C and κ can be taken the same for
all periodic points. As an immediate consequence of the proof of Proposition 3.1 we will
get the following:

Corollary 3.2. Let t > 0, then the periodic points p ∈ [t, 1] of the s.i.f. Ft are uniformly
contracting.

Proof of the proposition. Note that this proposition is trivial if the sequence (in) contains
finitely many 1’s (i.e., there is j such that ik = 0 for all k ≥ j): just note that in this
case Φ̺k ,t(x) → 1 as k → ∞, and that f0,t = f0 = f contracts in a neighborhood of
1. Therefore, from now on, we consider sequences having infinitely many 1’s. Moreover,
since the sequence (in) has no two consecutive 1’s, if i0 = 1, we replace y by f1,t(y) and
we can assume that the sequence starts with 0.

To each sequence ι = (in) ∈ Σ+
11 (with infinitely many 1’s), we associate the sequence

of positive integers (αj(ι))j∈N defined as follows: first, we consider the indices kj such that
ikj

= 1 (kj < kj+1). By convention, we write k0 = 0. We let

αj = αj(ι) = kj+1 − kj − 1, j ≥ 1.

This number is the number of consecutive 0’s between two consecutive 1’s (corresponding
to ikj+1

and ikj
). Note that the sequence (αj) determines the sequence (in) and vice versa.

13



Note that, if the block ̺k contains mk symbols 1’s, we have

k ≥

mk−1
∑

i=0

(αi + 1).

We define

α(̺k) = k −
mk−1
∑

i=0

(αi + 1).

Using this notation, if ̺k contains mk entries equal to 1 then

Φ̺k ,t(x) = f
α(̺k)
0 ◦ f1,t ◦ f

αmk

0 ◦ · · · ◦ f1,t ◦ fα2

0 ◦ f1,t ◦ fα1

0 (x).

Note that if the last entry of ̺k is ik = 1 then α(̺k) = 0 and

Φ̺k,t(x) = f1,t ◦ f
αmk

0 ◦ · · · ◦ f1,t ◦ fα2

0 ◦ f1,t ◦ fα1

0 (x).

We say that f1,t ◦fαi

0 , i = 1, . . . , mk, are the links of Φ̺k,t and that f
α(̺k)
0 is the remainder

of Φ̺k ,t.
Note that (fk

0 )′(x) → 0 as k → ∞ for x ∈ [t, 1], t > 0, uniformly on x. Thus

0 < (f
α(̺k)
0 )′(x) ≤ M(t), for all x ∈ [t, 1]. (3)

Recall that we are considering sequences (in) having infinitely many 1’s. This implies
that if mk is the number of links of ̺k (i.e., the number of 1’s) one has mk → ∞ as
k → ∞. We also have f1,t ◦ fα

0 (x) < 1 for every x ∈ [0, 1], in particular x = 1 has to
be considered just in the first link, and for the purpose to estimate the limit below, it is
irrelevant. Therefore, in view of (3), to prove the proposition, it is enough to see that, for
every sequence (αk) with αk ≥ 1, one has that

lim
k→∞

(f1,t ◦ fαk

0 ◦ · · · ◦ f1,t ◦ fα2

0 ◦ f1,t ◦ fα1

0 )′(x) = 0, for all x ∈ [t, 1). (4)

In order to estimate the derivative of Φ̺k ,t, we begin by estimating the derivatives of
its links. Thus, we consider segments of orbits consisting of α consecutive iterations by
f0 followed by exactly one iteration by f1,t. We now compute the derivative of such a
composition. Since f1,t is affine we just need to estimate the derivative of fα

0 .
For future uses, see Section 3.2, we also compute some derivatives for t = 0.

Lemma 3.3. Consider t ≥ 0 and a point y ∈ [t, 1), y 6= 0. Then

|(f1,t ◦ fα
0 )′(y)| =

(

w

y (1 − y)

)

(

1 −
w

σ

)

, where fα
0 (y) = 1 − w/σ.

Proof. Consider a point y ∈ [t, 1), y 6= 0, and write

f1,t ◦ fα
0 (y) = t + w, where fα

0 (y) = 1 − w/σ.

Since fα
0 (y) ∈ [0, 1] and w = 0 (respectively w = σ) if, and only if, y = 1 (respectively

y = 0) we have w ∈ (0, σ). It follows from the definition of f1,t that

|(f1,t ◦ fα
0 )′(y)| = σ |(fα

0 )′(y)|. (5)

Equation (2) and the definition of fα
0 (y) give the following:

|(fα
0 )′(y)| =

e−α

y2
(fα

0 (y))2 =
e−α

y2

(

1 −
w

σ

)2

. (6)

14



Claim 3.4.

e−α =

(

y

y − 1

) (

1 −
1

1 − w/σ

)

·

Proof. By definition of fα
0 (y) and Equation (1),

fα
0 (y) = 1 −

w

σ
=

1

1 − (1 − 1/y) e−α
·

Thus,

1 − (1 − 1/y) e−α =
1

1 − w/σ

Then,
y − 1

y
e−α = 1 −

1

1 − w/σ
·

This implies immediately the claim.

By the claim, replacing e−α in Equation (6), one gets

|(fα
0 )′(y)| =

∣

∣

∣

∣

1

y2

(

y

y − 1

) (

1 −
1

1 − w/σ

)

(

1 −
w

σ

)2
∣

∣

∣

∣

=

=

∣

∣

∣

∣

(

1

y (y − 1)

)

w

σ

(

−1

1 − w/σ

)

(

1 −
w

σ

)2
∣

∣

∣

∣

=
1

σ

(

w

y (1 − y)

)

(

1 −
w

σ

)

.

Hence, using Equation (5), we have

|(f1,t ◦ fα
0 )′(y)| = σ |(fα

0 )′(y)| =

(

w

y (1 − y)

)

(

1 −
w

σ

)

.

This concludes the proof of the lemma.

Recall that in Equation (4) we consider iterations of the form

Φ̺ℓ,t(y) = f1,t ◦ fαk

0 ◦ · · · ◦ f1 ◦ fα2

0 ◦ f1 ◦ fα1

0 (y),

for some block ̺ℓ ending with a 1 (ℓ = k +
∑k

j=1 αj). We let y = t + w0 and, for
j = 0, . . . , k, define inductively

(f1,t ◦ f
αj

0 ) ◦ · · · ◦ (f1,t ◦ fα2

0 )(f1,t ◦ fα1

0,t )(t + w0) = f1,t ◦ f
αj

0 (t + wj−1) = t + wj.

Note that wi ∈ (0, σ) for every i. Lemma 3.3 gives the following estimate:

|(Φ̺ℓ,t)
′(t + w0)| =

w1 (1 − w1/σ)

(t + w0) (1 − (t + w0))
· · ·

wk (1 − wk/σ)

(t + wk−1) (1 − (t + wk−1))
=

=
k
∏

i=1

wi (1 − wi/σ)

(t + wi−1) (1 − (t + wi−1))
.

Note that, rearranging the quotients, we have

|(Φ̺ℓ,t)
′(t + w0)| =

(

k−1
∏

i=1

wi (1 − wi/σ)

(t + wi) (1 − (t + wi))

)

wk (1 − wk/σ)

(t + w0) (1 − (t + w0))
. (7)

We need the following claim, whose proof we postpone to the end of the proof of the
proposition.
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Claim 3.5. For every t ≥ 0 small enough and w ∈ (0, σ) it holds that

w (1 − w/σ)

(t + w) (1 − (t + w))
≤ (1 − t).

Observe that, by Claim 3.5,

k−1
∏

i=1

wi (1 − wi/σ)

(t + wi) (1 − (t + wi))
≤ (1 − t)k−1. (8)

Write now

C(t, w0) =
1

(t + w0) (1 − (t + w0))
.

Note that, if t > 0 then C(t, w0) is upper bounded by some constant C(t) independent
of w0; and for t = 0, C(0, w0) is upper bounded by a constant C(w0) that only depends
on the initial point w0 = y 6= 0. In both cases, these constants do not depend on k. The
inequality in (8) and Equation (7) (recall that wk (1 − wk/σ) ∈ (0, 1)) imply that for the
block ̺ℓ above with k links one has

|(Φ̺ℓ,t)
′(t + w0)| ≤ (1 − t)k−1 C(t, w0). (9)

This immediately implies Equation (4) for t > 0 and every x ∈ [t, 1).

We now prove the claim.

Proof of Claim 3.5. The inequality in the claim can be written in the form

w −
w2

σ
≤
(

(t + w) − (t + w)2
)

(1 − t) =

= (t + w) − (t + w)2 − t (t + w) + t (t + w)2.

Since t (t + w)2 ≥ 0, to get this inequality it is enough to check that

−
w2

σ
≤ t − t2 − 2 t w − w2 − t2 − t w,

that is,

w
(

3 t + w −
w

σ

)

≤ t (1 − 2 t) or equivalently w

(

3 t −

(

1

σ
− 1

)

w

)

≤ t (1 − 2 t).

First, if w ∈ [1/4, 1] and t ≥ 0 is small enough, the left-hand side of the last inequality
is negative while the right-hand side is non-negative. Thus, in this case, the inequality is
obvious. For w ∈ [0, 1/4], if t is small, then w < (1 − 2 t)/3, therefore, as σ−1 > 1,

w

(

3 t−

(

1

σ
− 1

)

w

)

≤ 3 t w < t (1 − 2 t).

The proof of the claim is complete.

The proof of the proposition is now complete.
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3.2 Hyperbolicity of periodic points (t=0)

As a consequence of the proof of Proposition 3.1, we now obtain in Proposition 3.6 that
all periodic points y ∈ (0, 1] of the s.i.f. F0 are contracting. Moreover, note that 0 is a
periodic (fixed) point of F0 associated to the periodic block ̺1 = [0]. The fact that the
origin is an expanding fixed point for f0 implies that the 0 is an expanding fixed point
(i.e. Φ′

̺1,0(0) > 1) for F0. Thus, all periodic points of F0 are hyperbolic.

Proposition 3.6. Let y ∈ (0, 1] be a periodic point of F0 and ̺k a periodic block of it
(i.e., Φ̺k ,0(y) = y). Then

|(Φ̺k,0)
′(y)| < 1.

Proof. If the block ̺k has only 0’s it is immediate to check that y = 1. In this case, the
hyperbolicity of y is obvious. Therefore, we can assume that the block ̺k contains some
1 and some 0. This means that changing the beginning of the orbit, we can assume that
y ∈ (0, σ] and that the block is of the form [0, . . . , 1] (recall that, by definition of periodic
point of F0, a periodic block ̺k associated to y ending by 1 it necessarily starts by a 0).

Write y = w0 and assume that the block ̺k has ℓ links. Using the notation above, we
have wℓ = w0 = y. For t = 0, Equation (7) becomes

|(Φ̺ℓ,0)
′(0 + w0)| =

(

ℓ−1
∏

i=1

wi (1 − wi/σ)

wi (1 − wi)

)

wℓ (1 − wℓ/σ)

w0 (1 − w0)
=

ℓ−1
∏

i=0

1 − wi/σ

1 − wi
< 1.

This completes the proof of the proposition.

3.3 Dense orbits for Ft (|t| close to 0)

In Sections 3.1 and 3.2, we consider t ≥ 0, in such cases the interval [t, 1] is invariant by Ft.
Now we also consider negative t and then the interval [t, 1] is not invariant for Ft. In what
follows, we just consider points and blocks whose corresponding orbits remain in [t, 1],
that is, points y ∈ [t, 1] and blocks ̺k = [i1, i2, . . . , ik] of Σ+

11 such that Φ̺j ,t(y) ∈ [t, 1],
for all ̺j = [i1, . . . , ij] and j ≤ k. In this case, we say that ̺k is an admissible block of y.
The Ft-orbit of y is the set of points Φ̺k ,t(y) where ̺k is an admissible block of y.

Consider small t and define

σt = f1,t ◦ f0 ◦ f1,t(1).

Note that σt → σ as t → 0 and σ0 = σ. Thus σt ∈ (0, 1) if |t| is small enough. The goal
of this section is to prove the following proposition.

Proposition 3.7. The orbit of σt by the system Ft is dense in [t, 1], for every |t| small
enough.

The proof of this proposition consists of several steps. We first get an abstract result
about families of sequences which guarantees that the closure of their points contain
an interval (see Proposition 3.8 in Section 3.3.1). Next, in Section 3.3.2, we obtain in
Proposition 3.12 properties about the maps of the system Ft which allows us to construct
sequences contained in Ft-orbit of σt verifying the hypotheses of Proposition 3.8. Using
this fact, we conclude the proof of Proposition 3.7 in Section 3.3.3.
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3.3.1 Multisequences

We need some notations. We denote by [b]k a k-tuple of natural numbers [b]k = i1, . . . , ik
and by [b]k, j the (k + 1)-tuple i1, . . . , ik, j. We also denote by [0]k the k-tuple of k
consecutive 0’s. Finally, [b]0 and [0]0 denote empty tuples1.

Proposition 3.8. Consider a strictly increasing sequence of real numbers (xk)k≥0 con-
verging to some x+. For every m ∈ {1, 2, . . .} and every m-tuple [b]m = i1, i2, . . . , im with
ij ∈ N = {0, 1, . . .} for all j = 1, . . . , m, consider a strictly increasing sequence of real
numbers

(x[b]m,k)k≥0 = (xi1,i2,...,im,k)k≥0, x[b]m,k ∈ R,

such that:

P1) (Convergence) For every m ≥ 1 and for every m-tuple [b]m , one has that x[b]m,k →
x[b]m as k → ∞.

P2) (Contraction) There are constants C > 0 and λ ∈ (0, 1) such that

diam((x[b]m,k)k) = x[b]m − x[b]m,0 ≤ λm C.

P3) (Overlapping) There is r ∈ {1, 2, . . .} such that, for every m ≥ 0, every h ≥ 1,
and every m-tuple [b]m, it holds

x[b]m,h,[0]r
< x[b]m,(h−1) .

Let
x− = lim

k→∞
x[0]k

and
S =

⋃

m≥1

Sm, where Sm = {x[b]m = xi1,i2,...,im : (i1, i2, . . . , im) ∈ N
m}.

Then the set S is dense in the interval [x−, x+].

A simpler form of Proposition 3.8 with r = 1 was proved in [16, Lemma 4.1].

x− x+x0 x1 xk

x00 x01
x10 x11 xk0 xk1

xk10
xk11

. . .. . .

Figure 9: The multisequences in Proposition 3.8

Using the monotonicity of the sequences (x[b]m,k)k, it is immediate to check that the
interval [x−, x+] is the convex hull of the set S.

We say that the sequences (x[b]m,k)k are sequences of m-th generation. The sequence
(xk)k is the sequence of generation zero.

1We use different notations for k-tuples (subsets of N
k) and for k-blocks (which are blocks of Σ+

11).
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Proof of Proposition 3.8. Consider any point y ∈ [x−
0 , x+]. We must construct a sequence

of points zk of S converging to y. The result is obvious if y = x±. Thus we can focus on
points in the interval (x−, x+). We need the following preparatory lemma:

Lemma 3.9. Under the assumptions of Proposition 3.8, for every m ≥ 0, m-tuple [b]m,
h ∈ N, x[b]m, and w with

x[b]m,h ≤ w < x[b]m,(h+1)

there are k ≥ 0 and j ≥ 0 such that

x[b]m,(h+1),[0]k,j ≤ w < x[b]m,(h+1),[0]k ,(j+1).

x[b]m,h x[b]m,(h+1)
w x[b]m,(h+1),0x[b]m,(h+1),[0]k

x[b]m,(h+1),[0]k,(j+1)

x[b]m,(h+1),[0]k,j

. . .

Figure 10: Lemma 3.9

Proof. Let r be as in (P3) and consider the points

x[b]m,(h+1),[0]r
< x[b]m,(h+1),[0]r−1

< · · · < x[b]m,(h+1),0 < x[b]m,(h+1).

By hypothesis,
x[b]m,(h+1),[0]r

< x[b]m,h < w < x[b]m,(h+1).

Thus there is k, 0 < k ≤ r, with

x[b]m,(h+1),[0]k+1
≤ w < x[b]m,(h+1),[0]k

.

By (P1), one has
x[b]m,(h+1),[0]k,n → x[b]m,(h+1),[0]k

,

thus there is some j ≥ 0 such that

x[b]m,(h+1),[0]k,j ≤ w < x[b]m,(h+1),[0]k ,(j+1).

This completes the proof of the lemma.

Lemma 3.10. Consider any y ∈ (x−, x+) such that y 6∈ S. Then there are sequences
(z−n )n and (z+

n )n contained in S such that

1. z−n < y < z+
n ;

2. z−n = x[bn]mn ,hn
and z+

n = x[bn]mn ,(hn+1), for some (mn)-tuple bn and hn ∈ N; and

3. m1 ≥ 0 and m(n+1) > mn, thus mn ≥ n − 1.
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This lemma implies Proposition 3.8. To prove that S is dense in (x−, x+) it is enough
to see that any point in (x−, x+) \ S is accumulated by points in S. Thus we can assume
that y 6= x[0]k

, for all k. Recall that mn ≥ n − 1 and that, by Property (P2), every
sequence (x[b]m,k)k of generation m has diameter less than λm C. Thus

z+
n − z−n ≤ λmn C.

This immediately implies that z±n → y, proving the proposition.

Proof. The proof of the lemma is by induction. Consider the decreasing sequence of points
(x[0]k

)k, x[0]k
→ x−, and the sequence of intervals Ik = (x[0]k

, x[0]k−1
), k ≥ 1, where we

let x[0]
0

= x+. Clearly, since y 6= x[0]k
for all k, we have that y ∈ Ik, for some k ≥ 0.

By condition (P1), x[0]k−1,j → x[0]k−1
and since the sequence (x[0]k−1,j)j is increasing and

y 6∈ S, there is j ≥ 0 such that

z−1 = x[0]k−1
,j < y < x[0]k−1

,(j+1) = z+
1 .

We let m1 = k ≥ 1, [b1]m1
= [0]k−1, and h1 = j.

Suppose now inductively defined the terms z±1 , . . . , z±n (thus we have defined the num-
bers m1, . . . , mn, the blocks [b1]m1

, . . . , [bn]mn
and numbers h1, . . . , hn) satisfying the con-

clusions in the lemma. To define z±n+1 we apply Lemma 3.9 to the points y, z−n = x[bn]mn ,hn

and z+
n = x[bn]mn ,(hn+1),

x[bn]mn ,(hn+1),[0]ℓ−1
,j < y < x[bn]mn ,(hn+1),[0]ℓ−1

,(j+1).

It is enough to take

mn+1 = mn + ℓ , [bn+1]mn+1
= [bn]mn

, (hn + 1), [0]ℓ−1 , and hn+1 = j .

This completes the proof of the lemma.

The proof of Proposition 3.8 is now complete.

3.3.2 Generation of multisequences

We now construct the multisequences to which we apply Proposition 3.8. Recall that, for
small t, we define

σt = f1,t ◦ f0 ◦ f1,t(1) ∈ (0, 1).

A natural choice for the first sequence (xk)k is to consider the increasing sequence (fk
0 (σt))k,

converging to x+ = 1. In this way, the next generation of sequences is defined by taking
iterates of the first one by the maps fn

0 ◦ f1,t ◦ f0 ◦ f1,t with n ≥ 1. Note that, since
fk

0 (σt) → 1, fixed n, we have

xn,k = fn
0 ◦ f1,t ◦ f0 ◦ f1,t(xk) → fn

0 (σt) = xn, as k → ∞.

This gives the sequences of second generation. Note that the map f1,t ◦ f0 ◦ f1,t preserves
the orientation, and, since the sequence (xk)k is increasing, its images are also increasing.

In order to have the contraction in (P2), we need to consider large k, considering iter-
ates of f0 close to 1, thus localized in a contracting region. In this way, we must truncate
the sequence above and consider only its tail fk

0 (σt), k ≥ k0, for some k0. In this way,
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for large k0, we get the desired contraction properties for the sequences. Unfortunately,
this truncation has some side-effects, doing this we may be losing the overlapping con-
dition in (P3) for the next generation of sequence. That is the main reason because in
our construction we must consider r bigger than 1 in Proposition 3.8: the overlapping
occurs after some generations. Let us now go into the details of our construction. We
first introduce some notations.

Consider the fundamental domains of f0

D0(σt) = [f−1
0 (σt), σt] and D1(σt) = [f−2

0 (σt), f
−1
0 (σt)],

and the interval
D(σt) = D1(σt) ∪ D0(σt) = [f−2

0 (σt), σt].

Given a positive integer k, we define the block

[v]k := [0]k , 1, 0, 1 ,

that is, [v]k is the concatenation of the blocks [1, 0, 1] and [0]k.
Note that the blocks [v]k and [0]k are blocks of Σ+

11 and that the concatenation of two
consecutive blocks [v]k and [v]r with k and r > 0 is also a block of Σ+

11.
We denote by [v]i1,i2,...,im the concatenation of the blocks [v]i1 , [v]i2, . . . [v]im ,

[v]i1,i2,...,im = [0]i1 , 1, 0, 1, [0]i2 , 1, 0, 1, . . . , [0]im , 1, 0, 1 .

Clearly, the block [v]i1,i2,...,im is a block of Σ11.
For each k ≥ 1 and t close to 0, consider the map

Φ[v]k,t : D(σt) → R, Φ[v]k,t(x) = f1,t ◦ f0 ◦ f1,t ◦ fk
0 (x).

Remark 3.11. Every map Φ[v]k,t, k ≥ 0, preserves the natural orientation in R: just note
that f1,t reverses the orientation (and it is applied twice) and f0 preserves the orientation.
Thus Φ[v]k,t maps strictly increasing sequences to strictly increasing sequences.

Next proposition is the key ingredient to obtain sequences of points contained in the
orbit of σt satisfying the conditions in Proposition 3.8.

Proposition 3.12. There exists a neighborhood (a, b) of 1/4 such that, for all σ ∈ (a, b),
there are t0 > 0, and λ ∈ (0, 1), such that for every t ∈ [−t0, t0] the following holds:

G1) Φ[v]2+i,t(D(σt)) ⊂ D(σt), for every (2 + i)-block [v]2+i of Σ+
11 with i ≥ 0;

G2) Φ8
[v]2,t(σt) 6∈ D0(σt), thus Φ8

[v]2,t(σt) is in the interior of D1(σt); and

G3) 0 < Φ′
[v]2+i,t

(x) < λ for all x ∈ D(σt) and i ≥ 0.

For the sake of clearness, the proposition means that, for each σ, we consider the
affine maps f1,t(x) = σ (1 − x) + t and the system Ft associated to f0 and such a f1,t, in
particular, the maps Φ[v]2+i,t, Φ[v]2,t ∈ Ft.

The statement of the proposition is also valid for other choices of blocks of length
m + i, with m 6= 2, in (G1) and (G3), and it also is valid for Φr

[v]m,t(σt) with r 6= 8 and

m 6= 2 in (G2).
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Proof. The computations of the iterates of functions were made with the assistance of the
software Maple2. We just reproduce the final results of these computations. First, let us
prove the proposition for t = 0 and σ0 = σ = 1/4. Thus, for notational simplicity, in this
proof we omit the parameter t.

It follows easily from the monotonicity of f i
0 and f1,t ◦ f0 ◦ f1,t that

Φ[v]2(x) < Φ[v]2+i
(x) < 1/4, for all i = 1, 2, . . . and x ∈ [0, 1). (10)

Thus, it is sufficient to prove (G1) considering i = 0. In fact, since Φ[v]2 is injective
and preserves the orientation it is enough to show that the extremal points of D(1/4)
satisfy

f−2
0 (1/4) ≤ Φ[v]2(f

−2
0 (1/4)) < Φ[v]2(1/4) < 1/4.

As observed above, the last inequality is satisfied for all points in (0, 1), in particular for
1/4. The second inequality follows from the monotonicity of Φ[v]2 . For the first inequality,
we have

Φ[v]2(f
−2
0 (1/4)) − f−2

0 (1/4) =
13

4

e−1

3 + 13 e−1
−

1

1 + 3 e2
> 0. (11)

This proves (G1).
To prove (G2), one has to show that

f−2
0 (1/4) < Φ8

[v]2(1/4) < f−1
0 (1/4). (12)

The first inequality follows from the invariance of D(1/4) by Φ[v]2 in (G1), that is,

Φ8
[v]2(1/4) − f−2

0 (1/4) > 0.

For the second inequality in (12), we have

f−1
0 (1/4) − Φ8

[v]2
(1/4) ≥ 0.4752 − 0.1978 > 0. (13)

It remains to show (G3). Applying Equations (1) and (2), and simplifying the result,
we find

Φ′
[v]2

(f−2
0 (1/4)) =

(1 + 3 e2)2 e−3

(3 + 13 e−1)2
< 1. (14)

Since Φ′
[v]2

(x) is a decreasing function, we have the Property (G3) for i = 0. A similar

argument and the same computations (in fact, for i > 0 we add some iterations in the
contracting region for f0) show that (G3) also holds for all i ∈ N. More precisely, call
f−2

0 (1/4) = y and note that

Φ′
[v]2+i

(y) = Φ′
[0]i

(Φ[v]2(y)) Φ′
[v]2

(y)

and that Φ[v]2(y) belongs to a region where Φ′
[v]2+i

is contracting for all i ≥ 0. This
completes the proof of the proposition for the case t = 0.

For t 6= 0, first note, that, by monotonicity, the corresponding of equation (10) holds
for t close to 0,

Φ[v]2,t(x) < Φ[v]2+i,t(x) < σt, for all i = 1, 2, . . . and x ∈ [0, 1).

2This refers to the computations in Equations (11), (13), and (14).
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Now, to get condition (G1), we can proceed as in the case t = 0 just considering i = 0.
But this property follows by continuity. Clearly, (G2) follows by continuity. Finally, to
get (G3), we apply the arguments in the proof for t = 0 and it is enough to prove (G3)
for i = 0: for i > 0 we add some iterations in the contracting region. Finally, condition
(G3) for i = 0, follows by continuity. The proof of the proposition is now complete.

Proposition 3.13. Consider σ and t0 as in Proposition 3.12. For every t ∈ [−t0, t0],
given a block [b]n = i1, . . . , in, with ij ≥ 0, let

x[b]n(t) = Φ[v]2+i1
,t ◦ · · · ◦ Φ[v]2+in ,t(σt).

Then the set

S(t) =
⋃

n≥1

Sn(t), where Sn(t) = {x[b]n(t) : [b]n ∈ N
n}

is dense in D0(σt).

Remark 3.14. By construction, the points x[b]n(t) are in the orbit of 1 (or of σt) for the
system Ft.

Proof. To prove the proposition it is enough to see that the family of sequences (x[b]n,k(t))k

satisfies the hypotheses in Proposition 3.8 with the constant r in (P3) taken as r = 8.
The proof of this proposition follows by using the properties of the system Ft obtained

in Proposition 3.12 which hold for all small |t|. Therefore, for notational simplicity, we
assume that t = 0 and omit the parameter t. The proof for other values of t is identical.

Note that the points xi,[b]n satisfy the following inductive definition rule,

xi,[b]n = Φ[v]2+i
(x[b]n). (15)

That is, if we consider blocks [b]n = i1, . . . , in and [b]n+1 = i, i1, . . . , in, one has

x[b]n+1
= Φ[v]2+i

(x[b]n).

This definition rule and condition (G1) in Proposition 3.12 imply that the points x[b]n

and xi,[b]n are well defined and belong to D(σ) for all i ≥ 0 and every block [b]n = i1, . . . , in.
The proof of the proposition goes inductively. Note that

xi = Φ[v]2+i
(σ), i ≥ 0.

Since f 2+i
0 (σ) → 1 as i → ∞, we have

xi = Φ[v]2+i
(σ) = f1 ◦ f0 ◦ f1 ◦ f 2+i

0 (σ) → f1 ◦ f0 ◦ f1(1) = f1 ◦ f0(0) = f1(0) = σ = x+.

Noting that (f 2+i
0 (σ))i is a strictly increasing sequence, Remark 3.11 implies that (xi)i is

a strictly increasing sequence. Thus the zero generation sequence (xi)i satisfies Proposi-
tion 3.8 (note that x+ = σ).

We now prove inductively that the sequences satisfy conditions (P1) and (P2) in
Proposition 3.8. Since xn → σ = x+, the definition rule implies that, fixed i,

xi,n = Φ[v]2+i
(xn) → Φ[v]2+i

(σ) = xi, as n → ∞.
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Again by Remark 3.11, every sequence (xi,n)n is strictly increasing. Thus the sequences
of generation one satisfy (P1).

Condition (G3) and xn ∈ D(σ) for all n imply that

diam(xi,n)n ≤ λ diam((xn)n) < λ < 1,

where λ is as in Proposition 3.12. Thus the sequences of generation one satisfy (P2).
Assume now defined, for every ℓ ≤ n and every ℓ-tuple [b]ℓ, the sequences (x[b]ℓ,k)k of

ℓ-th generation satisfying (P1) and (P2):

(P1)ℓ (x[b]ℓ,k)k is a strictly increasing sequence which converges to x[b]ℓ ; and

(P2)ℓ diam(x[b]ℓ,k) ≤ λℓ.

We claim that the sequences (xi,[b]n,k)k of generation n + 1,

xi,[b]n,k = Φ[v]2+i
(x[b]n,k),

satisfy:

(P1)n+1 (xi,[b]n,k)k is a strictly increasing sequence converging to xi,[b]n .

Note that, by (P1)n, x[b]n,k → x[b]n . Thus,

xi,[b]n,k = Φ[v]2+i
(x[b]n,k) → Φ[v]2+i

(x[b]n) = xi,[b]n.

Finally, since Φ[v]2+i
preserves the orientation and (x[b]n,k)k is strictly increasing, the

sequence (xi,[b]n,k)k is also increasing.

(P2)n+1 diam((xi,[b]n,k)k) ≤ λn+1.

Note that x[b]n,k ∈ D(σ), recall condition (G3) in Proposition 3.12, and condition
(P2)n. By the definition of xi,[b]n,k one has

diam((xi,[b]n,k)k) = diam((Φ[v]2+i
(x[b]n,k))k) ≤

≤ λ diam((x[b]n,k)k) ≤ λ λn = λn+1.

This implies that the sequences (xi,[b]n,k)k satisfy (P1) and (P2) in Proposition 3.8. It
remains to verify that these sequences also satisfy (P3) (overlapping condition).

Hypothesis (P3) also follows by induction. Bearing in mind the definition of the
sequences in (15) and recalling that x[0]

0
= x+ = σ, condition (G2) in Proposition 3.12

implies that
x[0]

8
= Φ[v]2(x[0]

8−1
) = Φ8

[v]2(σ) < f−1
0 (σ).

Therefore, since Φ[v]2+j
preserves the orientation, for all j ≥ 1, one has

xj,[0]8
= Φ[v]2+j

(x[0]8
) < Φ[v]2+j

(f−1
0 (σ)) = Φ[v]2+j−1

(σ) = xj−1.

This completes the claim for sequences of generation zero.
We now argue inductively, assume that (P3) holds for every sequence of generation n:

for each block [b]n of length n and j ≥ 1 one has

x[b]n,j,[0]8
< x[b]n,(j−1).
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To see that (P3) holds for sequences of generation (n + 1) recall that Φ[v]2+i
preserves the

orientation, thus

xi,[b]n,j,[0]
8

= Φ[v]2+i
(x[b]n,j,[0]

8
) < Φ[v]2+i

(x[b]n,(j−1)) = xi,[b]n,(j−1).

This completes the construction of the sequences satisfying Proposition 3.8.
It remains to check that the closure of these sequences contains the fundamental

domain D0(σ) = [f−1
0 (σ), σ]. Proposition 3.8 implies that the closure of these sequences

contains the interval [x−, x+], where x+ = σ and x− = limk→∞ x[0]k
. Since the sequence

(x[0]k
)k is decreasing and by (G2) in Proposition 3.12 one has x[0]

8
< f−1

0 (σ), this ends
the proof of the proposition.

3.3.3 Density of orbits: Proof of Proposition 3.7

Consider small |t| and the set S(t) defined in Proposition 3.13. Note that, since the
blocks considered there do not admit consecutive 1’s, and finish with a 0, the set S(t) is
contained in the orbit OFt

(σt) of σt by the system Ft. Proposition 3.13 implies that S(t)
is dense in [f−1

0 (σt), σt]. Let

S̃(t) =
⋃

n≥1

fn
0 (S(t)) ⊂ OFt

(σt).

Thus the set S̃(t) is dense in [σt, 1] (note that fn
0 (σt) → 1 as n → ∞ and that [f−1

0 (σt), σt]
is a fundamental domain of f0).

Note that, f1,t(1) = t and that, for t close to 0, f1,t(σt) = bt > 1/16 if t is close to 0

and σ to 1/4. This implies that Ŝ(t) = f1,t(S̃(t)) is dense in the interval [t, bt]. Observe
that if t is small then f0(t) < bt (this fact is obvious for t ≤ 0). Thus the interval [t, bt]
contains a fundamental domain of f0 in [0, 1] (in fact, for t ≤ 0 it contains infinitely many
fundamental domains). Considering now the images of Ŝ(t) by fk

0 , for k ≥ 0, we get a set
which is dense in [t, 1]. Finally, by construction, this set is contained in the orbit of σt by
Ft. This completes the proof of the proposition.

3.4 Expanding systems of iterated functions (t < 0)

Given small ϑ < 0 and t0 < 0, for t ∈ [t0, 0), we consider the restriction of the maps f0

and f1,t to the interval [ϑ, 1]. Recall that this interval is not invariant for Ft. Using a
notation introduced in the beginning of this section, given a sequence ι = (in) ∈ Σ+

11 and
k ≥ 0, we consider the block ̺k = ̺k(ι) = [i0, i1, . . . , ik] and the map

Φ̺k ,t(x) = fik,t ◦ fik−1,t ◦ · · · ◦ fi1,t ◦ fi0,t(x).

This means that for every sub-block ̺ℓ of ̺k of the form ̺ℓ = [i0, i1, . . . , iℓ] the point
Φ̺ℓ,t(x) belongs to [ϑ, 1].

The goal of this section is to prove the following result:

Proposition 3.15. There is small t0 < 0 such that, for every interval I ⊂ (0, 1) and
every t ∈ (t0, 0), there are a block ̺k = [i0, i1, . . . , ik] of Σ+

11 and a point x ∈ I such that
Φ̺k ,t(x) = 0 and Φ̺ℓ,t(x) ∈ [t, 1] for every sub-block ̺ℓ of ̺k of the form ̺ℓ = [i0, i1, . . . , iℓ].
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The main step of the proof of this proposition is to define an expanding return map Rt

in a fundamental domain of f0 in [0, 1] (see Corollary 3.19). This map has discontinuities
and it is of the form Φ̺,t (here ̺ = ̺x and depends on the point) for some block of Σ+

11.
An essential ingredient of the proof is to analyze the Ft-orbits of the discontinuities of
this return map.

By shrinking ϑ and t0 we can assume that, for all t ∈ [t0, 0], one has that

• f0([t, 0]) ⊂ [ϑ, 0],

• f1,t([ϑ, 0]) = [σ + t, σ (1 − ϑ) + t] ⊂ [0, 1 + (2 t e)/σ].

Since f1,t(1) = t and f1,t reverses the orientation, one has that f1,t(x) ∈ [t, 0] for all
x ∈ [1 + t/σ, 1]. Hence, from the choice of ϑ and t0 above,

f0(f1,t(x)) ∈ [ϑ, 0], for all x ∈ [1 + t/σ, 1].

Therefore,

f1,t(f0(f1,t(x))) ∈ [0, 1 + (2 t e)/σ], for all x ∈ [1 + t/σ, 1] and t ∈ [t0, 0]. (16)

Throughout this section we will shrink, if necessary, the size of t0 < 0.

3.4.1 The return map

For t < 0, we define νt > 0 by the relation

f0

(

1 +
νt t

σ

)

= 1 +
t

σ
. (17)

Remark 3.16. Note that νt → e (the inverse of the derivative of f0 at 1) as t → 0.

We consider the fundamental domain Dt = [1 + νt t/σ, 1 + t/σ) of f0. Note that, by
definition,

f1,t

(

1 +
t

σ

)

= 0. (18)

Therefore, since f1,t(x) ≥ f1,t(1 + t/σ) for every x ∈ Dt, one has f1,t(x) ∈ (0, 1) for all
x ∈ Dt. Moreover, if t is small enough and x ∈ Dt then f1,t(x) < 1 + (νt t)/σ. Hence
there is (exactly one) n(x) > 0 (the return time of x) such that

f
n(x)
0 (f1,t(x)) ∈ Dt.

We now define a return map Rt on Dt as follows,

Rt : Dt → Dt, Rt(x) = f
n(x)
0 ◦ f1,t(x).

Note that f1,t(Dt) = (0, t − νt t] = (0, (νt − 1) |t| ]. Thus f1,t(Dt) contains infinitely many
fundamental domains of f0.

We consider the subset D of Dt of points d such that Rt(d) = 1 + (νt t)/σ. We have
that D = {d1, d2, . . . }, where (di)

∞
i=1 is an increasing sequence with di → 1 + t/σ. We say

that D is the discontinuity set of Rt.
We let d0 = 1 + νt t/σ and consider the partition of Dt given by the intervals Di,t =

(di−1, di], i ≥ 1. It is immediate to check the following:
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Figure 11: The return map Rt

• n(x) = n(di), for every x ∈ Di,t;

• n(di+1) = n(di) + 1; and

• the restriction of Rt to each Di,t is strictly decreasing and, for i ≥ 2, Rt(Di,t) = Dt.

Lemma 3.17. Let di be a discontinuity of Rt. Then there is a block ρ of Σ+
11 of the form

[1, 0, . . . , 0, 1] with exactly two 1’s such that Φρ,t(di) = 0.

Proof. The definition of di and Equation (17) give

f
n(di)
0 (f1,t(di)) = 1 +

νt t

σ
and f

n(di)+1
0 (f1,t(di)) = 1 +

t

σ
.

Finally, Equation (18) gives f1,t(f
n(di)+1
0 (f1,t(di))) = 0. This composition corresponds to

Φρ,t for some a block ρ = [1, 0, . . . , 0, 1] with n(di)+1 consecutive zeros as in the statement
of the lemma, ending the proof of the lemma.

We consider the following parametrization ϕt of the interval Dt. Given x ∈ Dt, we
write

ϕt : (1, νt] → Dt, ϕt(ν) = 1 + ν t/σ.

Using this parametrization, we define the map

Θt : (1, νt] → (1, νt], Θt(ν) = ϕ−1
t ◦ Rt ◦ ϕt(ν).

Note that the maps Θt and Rt are conjugate. This formula gives

Rt(1 + ν t/σ) = 1 +
Θt(ν) t

σ
. (19)

We consider the set of discontinuities of Θt

∆ = ϕ−1
t (D) = {δi = ϕ−1

t (di)), i ∈ N}.

Note that (δi)i is a decreasing sequence. We let ∆i = [δi, δi−1) = ϕ−1
t (Di).
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Proposition 3.18. There is small t0 < 0 such that for every t ∈ [t0, 0), every k ∈ N, and
every ν ∈ (1, νt] such that Θi

t(ν) 6∈ ∆ for all i ∈ {0, 1, . . . , k − 1}, it holds that

|(Θk
t )

′(ν)| >
1

3

(

15

12

)k

.

Using the conjugation ϕt above one immediately gets :

Corollary 3.19. There is small t0 < 0 such that for every t ∈ [t0, 0), every k ∈ N, and
every x ∈ Dt such that Ri

t(x) 6∈ D for all i ∈ {0, 1, . . . , k − 1}, it holds that

|(Rk
t )

′(x)| ≥
1

3

(

15

12

)k

.

A straightforward consequence of this corollary is the following. Given an interval I
denote by |I| its length.

Corollary 3.20. There is small t0 < 0 such that for every t ∈ [t0, 0) and every interval
I such that Ri

t(I) ∩ D = ∅, for all i ∈ {0, 1, . . . , k − 1}, and Rk
t (I) is an interval with

|Rk
t (I)| ≥

1

3

(

15

12

)k

|I|.

Therefore, for every interval I ⊂ Dt, there is a first k ≥ 0 such that Rk
t (I) contains a

discontinuity.

Proof of Proposition 3.18. The first step in the proof of the proposition is to estimate the
derivative of Θt:

Lemma 3.21. For every t < 0 small enough

|Θ′
t(ν)| = Ct(ν)

Θt(ν)

ν − 1
, where Ct(ν) =

1 + Θt(ν) t
σ

1 − (1 − ν) t
.

Therefore

lim
t→0−

Ct(ν) → 1 and lim
t→0−

|Θ′
t(ν)| =

Θt(ν)

ν − 1
.

Proof. Note first that
f1,t(1 + (ν/σ) t) = (1 − ν) t.

For the sake of simplicity of notation, we write n(ν) := n(ϕt(ν)). Then f
n(ν)
0 (f1,t(ϕt(ν))) =

Rt(ϕt(ν)). From Equations (2) and (19), it follows

|(f
n(ν)
0 )′(f1,t(1 + (ν/σ) t)| = |(f

n(ν)
0 )′((1 − ν) t)| =

e−n(ν)

(1 − ν)2 t2

(

1 +
Θt(ν) t

σ

)2

. (20)

On the other hand, by Equations (1) and (19),

f
n(ν)
0 ((1 − ν) t) =

1

1 −
(

1 − 1
(1−ν) t

)

e−n(ν)
= 1 +

Θt(ν) t

σ
.
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This equation gives

e−n(ν) =
Θt(ν) t2 (1 − ν)

σ
(

1 + Θt(ν) t
σ

)

((1 − ν) t − 1)
.

Replacing this value of e−n(ν) in Equation (20), one gets

|(f
n(ν)
0 )′(f1,t(1 + (ν/σ) t))| =

Θt(ν)

(ν − 1)

1 + Θt(ν) t
σ

σ (1 − (1 − ν) t)
.

The lemma follows noting that the derivative of f1,t is constant and equal to −σ.

Given ν ∈ (1, νt] write ν0 = ν and define inductively νi+1 = Θt(νi). Using Lemma 3.21
we write

|Θ′
t(νi)| = Ct(νi)

νi+1

νi − 1
.

Arguing inductively, we have

|(Θk
t )

′(ν0)| = Ct(ν0)
ν1

ν0 − 1
Ct(ν1)

ν2

ν1 − 1
· · · Ct(νk−1)

νk

νk−1 − 1
=

=
νk

ν0 − 1

(

k−1
∏

i=0

Ct(νi)

) (

k−1
∏

i=1

νi

νi − 1

)

.

(21)

Recalling that Ct(ν) → 1 as t → 0−, we have that if t is close to 0− then

Ct(ν) > 5/6.

By Remark 3.16, if t < 0 is close to 0 then νt < 3, thus νi ∈ (1, 3]. Since

min
x∈(1,3]

x

x − 1
=

3

2
thus

νi

νi − 1
≥

3

2
.

Finally, note that given any pair of numbers x and y in the interval (1, 3] one has

x

y − 1
≥

1

2
thus

νk

ν0 − 1
≥

1

2
.

Putting together these facts, it follows from Equation (21) that

|(Θk
t )

′(ν0)| ≥
1

2

(

5

6

)k (
3

2

)k−1

=
1

3

(

5

6

)k (
3

2

)k

=
1

3

(

15

12

)k

.

This completes the proof of the proposition.

3.4.2 Proof of Proposition 3.15

To prove the proposition, note that Rt(x) = Φ̺x,t(x) where ̺x is the block [1, 0, . . . , 0]
of Σ+

11 with n(x) ≥ 1 consecutive 0’s. Also note that the concatenation of the blocks
[̺x][̺Rt(x)] . . . [̺Rk

t (x)] is a block of Σ+
11.
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Lemma 3.22. Consider an interval I of Dt such that I,Rt(I), . . . ,Rk
t (I) do not contain

discontinuities. Then there is a block ̺k(I) := [1, . . . , 0] of Σ+
11 having exactly k+1 entries

equal to 1 such that
Rk+1

t (x) = Φ̺k(I),t(x), for all x ∈ I.

Proof. Suppose that I0 is an interval contained in Dt such that I0∩D = ∅. Then I0 ⊂ Di,t

for some i. This implies that, for all x ∈ I0, one has, for ni = n(x) = n(di−1),

Rt(x) = fni

0 ◦ f1,t(x) = Φ̺[0],t(x),

where ̺[0] is of form ̺[0] = [1, 0, . . . , 0].
Consider I = I0 an interval contained in Dt and write Ij = Rj

t (I0). Suppose that
I0, I1, . . . , Ik do not intersect the discontinuity set D of Rt. Then, for each j = 0, 1, . . . , k,
we have Ij ⊂ Dt,ij , for some ij . Then, by the first step of the construction, for each j

there is a block ̺[j] = [1, 0, . . . 0] of Σ+
11 such that, for all x ∈ Ij = Rj

t (I0), one has that

Rt(x) = Φ̺[j],t(x).

Therefore,

Rk+1
t (x) = Φ̺[k],t ◦ Φ̺[k−1],t ◦ · · · ◦ Φ̺[1],t ◦ Φ̺[0],t(x) = Φ̺k(I),t(x),

for every x ∈ I. The block ̺k(I) is the concatenation of ̺[0], ̺[1], . . . , ̺[k] and this
concatenation is a block of Σ+

11. Finally, since we are concatenating k +1 blocks and each
block has exactly one entry equal to 1, the block ρk(I) satisfies the lemma.

Using Lemma 3.22, Corollary 3.20 can be read as follows:

Lemma 3.23. For every interval I ⊂ Dt there are x ∈ I and a block ̺ of Σ+
11 starting

and ending by 1 such that Φ̺,t(x) = 0.

Proof. By Corollary 3.20, there is a first k such that Rk
t (I) contains a discontinuity. Thus

the intervals I,Rt(I), . . . ,Rk−1
t (I) do not contain discontinuities. Lemma 3.22 gives a

block ̺ = [1, 0, . . . , 0] of Σ+
11 having k entries equal to 1 with

Rk
t (x) = Φ̺,t(x), for all x ∈ I.

By hypothesis, there is ν ∈ I with Rk
t (ν) = Φ̺,t(ν) = di, for some discontinuity. By

Lemma 3.17, Φρ,t(di) = 0 for some block ρ = [1, 0, . . . , 0, 1] with exactly two 1’s. Consider
the concatenation [τ ] = [̺] [ρ], which is a block of Σ+

11 starting and ending by 1, by
construction Φτ,t(ν) = Φρ,t ◦ Φ̺,t(ν) = Φρ,t(di) = 0. This completes the proof of the
lemma.

End of the proof of Proposition 3.15. Note that given any interval I ⊂ (0, 1)
then I contains some subinterval J satisfying one of the three possibilities: (i) J ⊂ Dt,
(ii) J ⊂ (0, 1 + (νt t)/σ) (recall that 1 + (νt t)/σ is the left extreme of Dt), and (iii)
J ⊂ (1 + t/σ, 1) (recall that 1 + t/σ is the right extreme of Dt).

First, if the interval J is contained in Dt the proposition follows from Lemma 3.23.
Second, if the interval J is in (0, 1+(νt t)/σ) there is some m such that fm

0 (J)∩Dt 6= ∅.
Then we apply the first case and we are done.
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It remains to consider the case J ⊂ (1+ t/σ, 1). In this case, we have by Equation (16)
and since νt → e as t → 0−, that for every t close to 0−,

f1,t ◦ f0 ◦ f1,t(J) ⊂ (0, 1 + (2 t e)/σ) ⊂ (0, 1 + (νt t)/σ).

We are now in the second case and the result follows. This completes the proof of the
proposition.

4 Dynamics of the model family (Dictionary Ft–Ft)

In this section, we state some basic dynamical properties of Ft. Recall the definition of
Ft in Section 2 and note that if X0 = (xs

0, x
c
0, x

u
0) ∈ Ri, i = 0, 1, then

X1 = (xs
1, x

c
1, x

u
1) = Ft(X0), xc

1 = fi,t(x
c
0). (22)

Recall that f0,t = f and f1,t(x) = σ (1 − x) + t.

Remark 4.1. For every t, P = (0, 1, 0) and Q = (0, 0, 0) are fixed saddles of Ft of indices
1 and 2, respectively. Moreover, we have that

W s(P, Ft) ⊃ [0, 1] × (0, 1] × {0},

W s(Q, Ft) ⊃ [0, 1] × {0} × {0},

W u(P, Ft) ⊃ {0} × {1} × [0, 1], and

W u(Q, Ft) ⊃ {0} × [0, 1) × [0, 1].

Since {0} × {1} × [5/6, 1] ⊂ R1 and t = f1,t(1), one has

{3/4} × {t} × [0, 1/2] ⊂ Ft({0} × {1} × [5/6, 1]) ⊂ W u(P, Ft),

we also have that, for t > 0, Xt = (3/4, t, 0) is a transverse homoclinic point of P .
Moreover, for t = 0, X0 = (3/4, 0, 0) is a heteroclinic point (X0 ∈ W u(P, F0) ∩

W s(Q, F0)). Since {0} × (0, 1) × {0} ⊂ W u(Q, Ft) ∩ W s(P, Ft), it follows that F0 has a
heterodimensional cycle associated to P and Q.

Similarly, for t < 0, the point (3/4, 0, 0) is a transverse homoclinic point of Q.

We now translate some dynamical properties of the system Ft to the diffeomorphism
Ft. These properties follow in a standard way using the invariance by Ft of the x, y,
and z-directions and from the uniform contraction in the x-direction and the uniform
expansion in the z-direction. The proofs of properties (D1) and (D2) are omitted, for
details we refer to [22, 23, 7].

Consider the maximal invariant set Γt of Ft in R, Γt = ∩k∈ZF k
t (R). To each point

X ∈ Γt, we associate the sequence ι(X) = (ιj(X))j∈Z ∈ {0, 1}Z defined by

ιj(X) = i if, and only if, F j
t (X) ∈ Ri.

The sequence ι(X) is the itinerary of X. Since Ft(R1)∩ (R1) = ∅, the itinerary ι(X) does
not have two consecutive 1’s, so we have that ι(X) ∈ Σ11 for all X ∈ Γt.

D1) Let ̺ be an admissible periodic block of Σ+
11 and define by ̺∞ the concatenation

of ̺ with itself infinitely many times (which is a sequence of Σ11). Suppose that
Φ̺,t(a) = a. Then there is a periodic point (as, a, au) of Ft whose itinerary is ̺∞.
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Given ι = (ik)k ∈ Σ11 a central block of ι is a block ̺ = [ik−, . . . , i0, . . . , ik+ ] for some
k+ ≥ 0 and k− ≤ 0. We say that the point A = (as, a, au) has a ̺-itinerary if for all
ℓ ∈ [k−, k+] one has F ℓ

t (A) ∈ Riℓ .

D2) Consider ι ∈ Σ11 and a central block ̺ of ι. Suppose that there is a point A having
a ̺-itinerary. Then there is a cube C̺(A) = Is × Ic × Iu containing A such that
every point of C̺(A) has a ̺-itinerary and |Is| < (1/3)k+

and |Iu| < (1/3)−k−

.

In fact, given a point A = (as, ac, au) whose infinite forward itinerary is ι+ then the
points in [0, 1]× {ac} × {au} have the same forward infinite itinerary ι+. Similarly,
if A = (as, ac, au) has infinite backward itinerary ι− then the points in either {as}×
{ac} × [0, 1/6], if au ∈ [0, 1/6], or in {as} × {ac} × [5/6, 1], if au ∈ [5/6, 1], have the
same backward itinerary ι−.

Given a block ̺ = [i0, i1, . . . , ik] of Σ+
11, we say that ρ is an initial sub-block of ̺ if

ρ = [i0, . . . , iℓ] for some ℓ ≤ k.

D3) Let ̺ = [i0, . . . , ik] be a block of Σ+
11 such that, for every initial sub-block ρ of ̺,

one has Φρ,t(1) ∈ [ϑ, 1] (ϑ < 0 as in Section 3.4).

1. Suppose that Φ̺,t(1) > 0. Then there is a transverse homoclinic point of P of
the form (as, Φ̺,t(1), 0), with as ∈ [0, 1], such that {as}× {Φ̺,t(1)}× [0, 1/6] is
contained in W u(P, Ft).

2. Suppose that Φ̺,t(1) = 0. Then Ft has a heterodimensional cycle associated
to P and Q

3. If a point X = (xs, xc, xu) ∈ R is a (transverse) homoclinic point of P for Ft

then there is a block ̺ of Σ+
11 such that xc = Φ̺,t(1).

Proof of (D3). By definition of Ft, if i0 = 0 there is a subinterval W of {0}×{1}× [0, 1/6]
consisting of points having a ̺-itinerary. Similarly, if i0 = 1 there is a sub-interval of
{0}×{1}× [5/6, 1] consisting of points having a ̺-itinerary. In both cases, these segments
are contained in W u(P, Ft) (recall Remark 4.1) and have length less than (1/3)k+1. By
definition, there is as ∈ (0, 1) with

{as} × {Φ̺,t(1)} × [0, 1/6] ⊂ F k+1
t (W ) ⊂ W u(P, Ft), k + 1 is the length of ̺.

By Remark 4.1, [0, 1] × (0, 1] × {0} ⊂ W s(P, Ft), thus if Φ̺,t(1) > 0 we have that
(as, Φ̺,t(1), 0) is a transverse homoclinic point of P . This proves the first item of (D3).
Item (3) of (D3) follows analogously and its proof is omitted.

The second item of (D3) follows noting that [0, 1]×{0}×{0} is contained in W s(Q, Ft).
Thus if Φ̺,t(1) = 0 then W u(P, Ft)∩W s(Q, Ft) 6= ∅. By Remark 4.1, {0}× (0, 1)×{0} ⊂
W s(P, Ft) ∩ W u(Q, Ft), thus Ft has a heterodimensional cycle.

We now introduce some notations. Given points xs, xu ∈ [0, 1] and a (non-trivial)
subinterval I of [ϑ, 1], define the following subsets of the cube R:

• s-strip, S(I, xu) = [0, 1] × I × {xu};

• lower u-strip, S−(xs, I) = {xs} × I × [0, 1/6];
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• upper u-strip, S+(xs, I) = {xs} × I × [5/6, 1]; and

• complete u-strip, S±(xs, I) = S+(xs, I) ∪ S−(xs, I).

For |t| small, consider the subset Υt of H(P, Ft) consisting of points of the form
(as, Φ̺,t(1), 0) such that as ∈ [0, 1], Φ̺,t(1) ∈ [0, 1], Φρ,t(1) is in [ϑ, 1] for every initial
sub-block ρ of ̺, and {as} × {Φ̺,t(1)} × [0, 1/6] ⊂ W u(P, Ft).

As an immediate consequence of (D3) and of Proposition 3.7, we have the following:

Remark 4.2. Consider |t| close to 0. Every s-strip S(I, xu), with I ⊂ [t, 1] and xu ∈
[0, 1/6], intersects W u(P, Ft). In particular, if S(I, xu) ⊂ W s(P, Ft) then S(I, xu) contains
a transverse homoclinic point of P for Ft.

Remark 4.3. Note that the Hausdorff dimension HD(H(P, Ft)) of the homoclinic class
H(P, Ft) is at least the Hausdorff dimension of its projection in the central direction (see,
for instance, [38, Chapter 4]). By Remark 4.2, the central projection of this class contains
the interval [t, 1] if t ≥ 0 or [0, 1] if t < 0. Thus HD(H(P, Ft)) ≥ 1 for every small |t|.

By the definition of Ft, the images of u-strips S+(xs, I) and S−(xs, I) satisfy

{x+} × f1,t(I) × [0, 1/6] ⊂ Ft(S
+(xs, I)), where x+ = 3/4 − λ1 xs,

{x−} × f0(I) × [0, 1] ⊂ Ft(S
−(xs, I)), where x− = λ0 xs.

Therefore we have the following,

Remark 4.4. Consider small t < 0. Then for every point x0 ∈ [0, 1] and every interval
I ∈ [t, 1] one has that

• The image by Ft of an upper u-strip S+(x0, I) contains a lower u-strip of the form
S−(x+

0 , f1,t(I));

• The image by Ft of the lower u-strip S−(x0, I) contains a complete u-strip of the
form S±(x−

0 , f0(I)).

Arguing inductively and applying Remark 4.4, we get the following:

D4) Consider a complete u-strip S±(xs, I), where I is an interval of ⊂ [ϑ, 1]. For every
point y ∈ I and every block ̺ = [i0, . . . , ik] of Σ+

11 such that, for every initial sub-
block ρ of ̺, the point Φρ,t(y) ∈ [ϑ, 1], there are a sub-interval J of I and a point
x̄s ∈ (0, 1) such that

F k+1
t (S±(xs, I)) ⊃

{

S−(x̄s, Φ̺,t(J)), if ik = 1,

S±(x̄s, Φ̺,t(J)), if ik = 0.

5 Hyperbolic dynamics for positive t

The goal of this section is to prove item A of Theorem 1.
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5.1 Basic geometrical properties of the dynamics (t ≥ 0)

Given small t ≥ 0 consider the subset Ωt of Γt consisting of non-wandering points of Ft,
Ωt = Γt ∩ Ω(Ft). We will prove that for small t > 0 the set Ωt is hyperbolic (the disjoint
union of the saddle Q and H(P, Ft)) and properly contained in Γt. Observe that, for every
t, the set Γt contains the interval {0} × [0, 1] × {0}.

Theorem 5.1. For every t > 0, the set Ωt \ {Q} is hyperbolic and the restriction of Ft

to Ωt \ {Q} is conjugate to the shift ς : Σ11 → Σ11. Moreover, Ωt \ {Q} = H(P, Ft).

Note that this result implies item A in Theorem 1. The proof of this theorem has
two steps. The first one (which holds for t ≥ 0) is topological and has two parts. In
Section 5.1.1, we see that the itinerary map ι : Γt → Σ11 in Section 4 is onto and defines
a semi-conjugacy between the dynamics of Ft restricted to Γt and the shift map on Σ11,
i.e., ι ◦ Ft = ς ◦ ι. In Section 5.1.2, we localize the non-wandering points of Ft.

In the second part (which holds just for t > 0), we see that hyperbolic estimates in
Section 3.1 for the system Ft imply the hyperbolicity of H(P, Ft). Using the hyperbolic
estimates, we prove that the restriction of ι to H(P, Ft) is in fact a conjugacy with the
shift on Σ11, see Section 5.2. This also will imply that, for t > 0, the non-wandering set
is the disjoint union of the homoclinic class of P and the saddle Q.

5.1.1 The semi-conjugacy

Lemma 5.2. For every t ≥ 0, the map ι : Γt → Σ11 is onto and satisfies ι ◦ Ft|Γt
= ς ◦ ι.

We observe that this map is not injective. For instance, the segments {0}× [0, 1]×{0}
and {3/4} × [t, σ + t] × {0} are contained in Γt, and each interval consists of points with
the same itinerary. In fact, in the proof of the lemma, we show that points in the same
central segment of Γt have the same itinerary, see Scholium 5.3.

Proof. The semi-conjugacy property ι ◦ Ft|Γt
= ς ◦ ι follows from the definition of ι. To

see that ι is onto define lower and upper u-segments in R̃ = [0, 1]3 as segments of the form

{a} × {b} × [0, 1/6] ⊂ R0, {a} × {b} × [5/6, 1] ⊂ R1, a ∈ [0, 1] and b ∈ [0, 1],

respectively. By construction, the image by Ft of a lower u-segment contains both a lower
and an upper u-segment. Similarly, the image by Ft of an upper u-segment just contains
a lower u-segment. Using that Ft is uniformly expanding in the z-direction (recall (D2)),
given any u-segment V in Rk, k = 0, 1, and a sequence (in) ∈ Σ+

11, with i0 = k, there is a
unique point in V whose forward itinerary is the one given by (in).

Using the facts above, it is easy to see (recall (D2)) that given a sequence J + = (in)
the points whose forward itinerary is J + form a s-strip Ss(J +) = S([0, 1], c]) = [0, 1] ×
[0, 1] × {c}, for some c ∈ [0, 1].

Consider now backward itineraries J − = (in)n≤0 and negative orbits, using the ex-
pansion of F−1

t in the x-direction, one gets that given a sequence J − = (in)n≤0 the points
whose backward itinerary is J − forms either an upper or a lower u-strip Su(J −) of the
form Su(J −) = S(a, [0, 1]), recall (D2) again.

Given now a complete itinerary J = (in) ∈ Σ11, we consider the s-strip Ss(J +)
associated to J + and the u-strip Su(J −) associated to J − and consider their intersection,
which is a central segment consisting of points whose itinerary is J .
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Scholium 5.3. Two points X = (xs, xc, xu) and Y = (ys, yc, yu) have the same itinerary
if, and only if, xs = ys and xu = yu.

5.1.2 Localization of the non-wandering set

Lemma 5.4. Consider small t ≥ 0. Then every non-wandering point Y = (ys, yc, yu) ∈ Γt

with Y 6= Q satisfies t ≤ yc ≤ 1.

Proof. Consider the auxiliary sub-cube R̃ = [0, 1] × [0, 1] × [0, 1] of R. We claim that if
a point Y ∈ Γt has some forward iterate F k

t (Y ) in R̃ then the future iterates of F k
t (Y )

remains in R̃. Just note that, by Equation (22), if Y0 = (ys
0, y

c
0, y

u
0 ) ∈ R̃ ∩ Γt then

Y1 = (ys
1, y

c
1, y

u
1 ) satisfies yc

1 = fi,t(y
c
0), i = 0, 1, and fi,t([0, 1]) ⊂ [0, 1] for t ≥ 0.

It also follows from the definition of Ft and Equation (22), that every point Y =
(ys, yc, yu) with yc > 1 or with −δ ≤ yc < 0 (δ as in the definition of the cube in the
model family) has either some iterate outside R or has some iterate Y ′ in R̃. In this last
case, by the observation above if Y ∈ Γt, then the whole forward iterate of Y ′ remains in
R̃. This immediately implies that every non-wandering point Y ∈ Γt belongs to R̃.

Note that the proof is complete for t = 0. Thus consider t > 0 and note that the
previous arguments imply that we can focus on the points in the cube R̃.

For all x ∈ (0, t], if t > 0 is small then fn
0,t(x) = fn

0 (x) > t, for some n, and f1,t(x) =

σ (1 − x) + t > t. By Equation (22), every Y0 = (ys
0, y

c
0, y

u
0 ) ∈ R̃ with yc

0 < t satisfies
yc

i ≥ t, for all i > i0 for some i0. Therefore such a point cannot be non-wandering. Thus
every Y ∈ Γt ∩ Ωt satisfies yc ∈ [t, 1].

To finish the proof of the lemma it remains to see that the only non-wandering point
with central coordinate equal to 0 is Q. Observe that any point Y with central coordinate
equal to 0 different from Q either has some iterate outside R (in this case we are done)
or it has a first iterate Yi in R1. In this last case, yc

i+1 > t and so yi+k > t for all k ≥ 1.
Thus the assertion follows from the arguments above.

For each t ≥ 0, consider the cubes R0,t = [0, 1]× [t, 1]× [0, 1/6] and R1,t = R1 and let
Rt = R0,t ∪ R1. As a direct consequence of Lemma 5.4 we get

Lemma 5.5. For t > 0, Ωt ⊂ {Q} ∪ Λt, where Λt = ∩k∈ZFt(Rt).

Note that to prove Theorem 5.1 it remains to check that Λt is hyperbolic and coincide
with H(P, Ft), and that the restriction of Ft to Λt is conjugate to the shift ς.

To prove the hyperbolicity of the set Λt it is enough to focus on the invariant y-
direction: the x-direction is a uniformly contracting direction of Ft and the z-direction
is a uniformly expanding direction of Ft. Since the dynamics of Ft in the y-direction is
given by the system Ft, a consequence of Proposition 3.1 is that, for t > 0, the y-direction
is a uniformly contraction for Ft (restricted to the set Λt.)

Finally, the conjugacy to the shift will follows using the hyperbolicity of Λt. Recall
that Lemma 5.2 gives a semi-conjugacy between the dynamics of Ft on Γt and the shift ς
defined on Σ11, for t ≥ 0.

5.2 Hyperbolicity of the homoclinic class H(P, Ft) for t > 0

In this section, we conclude the proof of item A of Theorem 1 (i.e., the proof of Theo-
rem 5.1).
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Proposition 5.6. For every t > 0 small enough, the set Λt is hyperbolic for Ft and equal
to H(P, Ft). Moreover, the map Ft|H(P,Ft) is conjugate to the shift (ς, Σ11).

Proof. By construction, the set Λt has a DFt invariant splitting TΛt
M = Es ⊕ Ec ⊕ Eu

where the bundles are one-dimensional and parallel to the axis x, y, and z, respectively.
The first bundle is uniformly contracting and the last one is uniformly expanding. We
now prove that the central bundle is also uniformly contracting, if t > 0. Equation (22)
yields that the central dynamics of Ft is given by system Ft. Proposition 3.1 implies that
this system is contracting. Therefore we have

Lemma 5.7. For every point X ∈ Λt, t > 0, and every vector v ∈ Ec
X , one has

lim
n→∞

|DXF n
t (v)| → 0, for every t > 0 small enough.

To prove the hyperbolicity of the central bundle Ec is enough to see that there is
C > 0 such that for all n ≥ 0

|DXF n
t (v)| ≤ C

1

2n
, for every unitary vector v ∈ Ec

X and X ∈ Λt. (23)

This claim follows from Lemma 5.7 using standard arguments that we recall for com-
pleteness. We first claim that there is m such that for all X ∈ Λt and all unitary vector
v ∈ Ec

X there is m(X) ≤ m such that |DXF
m(X)
t (v)| ≤ 1/2. Indeed, by Lemma 5.7, for

all X ∈ Λt there is n(X) such that |DXF
n(X)
t (v)| < 1/3, for every unitary vector v ∈ Ec

X .
Thus, for each X ∈ Λt there is a neighborhood B(X) of X such that

|DY F
n(X)
t (v)| < 1/2, for every Y ∈ B(X) and every unitary vector v ∈ Ec

Y .

It follows from the compactness of Λt the existence of B(Xi), i = 1, . . . , N0, such that
Λt ⊂ ∪N0

i=1B(Xi). Take

M0 = sup{‖DY F n
t |E

c‖ : Y ∈ B(Xi), 1 ≤ n ≤ n(Xi), i = 1, . . . N0},

We fix m0 > 2 and m such that

M0
1

2m0
<

1

2
and m > m0 · sup{n(Xi) : i = 1, . . . , N0}. (24)

Given any X ∈ Λt, there is 1 ≤ i1 ≤ N0 such that X ∈ B(Xi1). Consider ni1 , . . . , nik , nik+1
,

where nij = n(Xij ), satisfying

a) F
ni1

+···+nij

t (X) ∈ B(Xij+1
), 1 ≤ j ≤ k ; and

b) ni1 + · · ·+ nik ≤ m < ni1 + · · · + nik + nik+1
.

Note that item (b) and the definition of m in Equation (24) imply that k ≥ m0. Then,
for Lj = ni1 + · · · + nij , 1 ≤ j ≤ k + 1, we have

|DXF m
t (v)| = ‖D

F
Lk
t (X)

F m−Lk
t |Ec‖ ·

k
∏

j=1

‖D
F

Lj−1

t (X)
F

nij

t |Ec‖ <
M0

2k
≤

M0

2m0
<

1

2
, (25)
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for every X ∈ Λt and every unitary vector v ∈ Ec
X .

Given n ∈ N and a point X ∈ Λt, we write n = k m + r, r ∈ [0, m − 1]. Note that
k ≥ n/m− 1. Let C ′ = sup{‖DY F r

t |E
c‖ : r = 1, . . . , m}. By Equation (25), we have that

|DXF n
t (v)| ≤

1

2k
‖DF n−r

t (X)F
r
t |E

c‖ ≤ C ′ 1

2(n/m−1)
≤ C

1

2n
,

where C = 2 C ′/21/m. This concludes the proof of Equation (23). Thus, the proof of the
hyperbolicity of Λt, t > 0, is complete.

Lemma 5.8. The restriction ι|Λt
: Λt → Σ11 is a bijection for t > 0 small enough.

Proof. Lemma 5.2 claims that ι : Λt → Σ11 is onto and Scholium 5.3 claims that two points
X = (xs, xc, xu) and Y = (ys, yc, yu) in Λt having the same itinerary satisfy xs = ys and
xu = yu.

It is easy to prove that if two points X and Y as above, X, Y ∈ Λt, have the same
itinerary then the whole central segment I = {xs} × [xc, yc] × {xu} is contained in Λt

and consists of points with the same itinerary. The contraction in the central direction
implies that the length of F−i

t (I) increases exponentially. Since the central diameter of R
is bounded this is not possible. The proof of the lemma is now complete.

The fact that ι|Λt
is a topological conjugacy follows using standard arguments anal-

ogous to the proof of the conjugacy between the usual Smale’s linear horseshoe and the
complete shift of two symbols.

To finish the proof of the proposition, it remains to see that Λt ⊂ H(P, Ft). The
conjugacy with the shift implies that the transverse homoclinic points of P are dense in
Λt. For this it is enough to observe that every sequence (different from the zero sequence)
starting with a sequence of zeros and ending with a sequence of zeros corresponds to a
transverse homoclinic point of P and that these sequences are dense in Σ11.

6 Generating bifurcations: explosion of dynamics

In this section, we prove item B of Theorem 1, which follows from the results for the
system F0 in Section 3.3. We first observe that arguing as in Section 5.2 and using the
results in Section 3.2, one gets that every periodic point of H(P, F0) different from Q is
hyperbolic and has index one. Note that (1) in item B, existence of a heterodimensional
cycle, was obtained in Remark 4.1. Moreover, it is obvious that H(Q, F0) is trivial (see
statement (2) in item B). Now let us recall that Γ0 = ∩k∈ZF k

0 (R).

Theorem 6.1. Assume that σ ∈ (a, b) is as in Proposition 3.12. Then H(P, F0) = Γ0

and thus H(P, F0) contains infinitely many central intervals.

Using the semi-conjugacy in Section 5.1.1, this theorem implies (3) in item B of The-
orem 1.

The inclusion H(P, F0) ⊂ Γ0 follows by construction recalling (3) in (D3) and that
Φ̺,0(1) ≥ 0 for every block ̺ of Σ+

11. The main step of the proof of Theorem 6.1 is the
following:
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Lemma 6.2. Let A = (as, ac, au) ∈ Γ0 with ac > 0. Then there are sequences of points
An = (as, ac, au

n), An → A, and of positive numbers ǫn, ǫn → 0, such that the disks

Dn = [as − ǫn, a
s + ǫn] × [ac − ǫn, ac + ǫn] × {au

n}

satisfy

• An ∈ Dn and Dn ⊂ W s(P, Ft),

• Dn intersects transversely W u(P, Ft).

This lemma implies that every disk Dn contains a point Xn of H(P, Ft). By construc-
tion, Xn → A. Thus A ∈ H(P, Ft). It is not difficult to check that the points of Γ0 with
positive central coordinate form a dense subset of Γ0, thus it follows that Γ0 ⊂ H(P, F0).

Proof. By replacing A by some iterate we can assume that A ∈ R0 (and thus au ∈ [0, 1/6]).
Consider the segment Iu(A) = {as} × {ac} × [0, 1/6]. By (D2), the infinite backward
itinerary of every point of Iu(A) is the ones ι−(A) of A.

Using the expansion in the z-direction and considering positive iterations of Iu(A),
we obtain a sequence An = (as, ac, au

n) with F n
0 (An) = (ās

n, āc
n, 0), where ās

n ∈ (0, 1) and
āc

n = Φ̺,0(a
c) > 0 for some block of Σ+

11 (recall that Φ̺,0(0, 1) ⊂ (0, 1)). We consider small
ǭn such that

D̂n = [ās
n − ǭn, ās

n + ǭn] × [āc
n − ǭn, āc

n + ǭn] × {0} ⊂ W s(P, F0).

By construction, F−n
0 (D̂n) contains a disk Dn as the one in the lemma.

We need to prove that Dn contains some transverse homoclinic point of P . Consider
the stable segment Is(An) = [as − ǫn, a

s + ǫn] × {ac} × {au
n} ⊂ Dn and its backwards

iterates. Using the expansion of F−1
0 in the x-direction, we get a negative iterate m such

that
F m

0 (Is(An)) = [0, 1] × {ãc
m} × {ãu

m}, with ãc
m > 0 and ãu

m ∈ [0, 1/6].

This implies that the disk Dn contains a sub-disk D̃n such that F m
0 (D̃n) is a s-strip

S = S(I, xu) in W s(P, Ft) with I ⊂ (0, 1) and xu ∈ [0, 1/6]. By Remark 4.2, the s-strip S
contains a transverse homoclinic point of P , ending the proof of the lemma.

This finishes the proof of the theorem.

7 Dynamics for t < 0. Non-hyperbolic classes

In this section, we prove that for small t < 0 the homoclinic classes of P and Q coincide.
In fact, arguing as in Section 5.1, it is not hard to prove that these classes are the maximal
invariant set of Ft in R (we are not going to prove this fact). As a consequence, these
homoclinic classes contains infinitely many central segments. We give a different proof of
this fact in Section 7.1 (see Scholium 7.2).
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7.1 H(Q, Ft) ⊂ H(P, Ft)

Theorem 7.1. Assume that σ ∈ (a, b) is as in Proposition 3.12 and take small t < 0.
Then H(Q, Ft) ⊂ H(P, Ft).

The proof of this theorem just consists in a small modification of the arguments in the
proof of Theorem 6.1, so we omit some details.

Proof. It is enough to see that every transverse homoclinic point X of Q is accumulated by
points in H(P, Ft). Replacing X by some iterate of it, we can assume that X = (xs, 0, 0)
and that F−1

t (X) 6∈ [0, 1] × {0} × {0} = W s
loc(Q, Ft). This implies that X̃ = F−1

t (X) =
(x̃s, x̃c, x̃u) belongs to R1 and x̃c = 1 − |t|/σ ∈ (0, 1). For each ǫ > 0, consider the disk

Vǫ = [x̃s − ǫ, x̃s + ǫ] × [x̃c − ǫ, x̃c) × {x̃u} ⊂ W s(P, Ft).

There is now n < 0 such that F n
t (Vǫ) contains a s-strip S(fn

0 ([x̃c − ǫ, x̃c)), x̄u), where
fn

0 ([x̃c − ǫ, x̃c)) ⊂ (0, 1) and x̄u is close to 0. By Remark 4.2, S(fn
0 ([x̃c − ǫ, x̃c)), x̄u)

intersects transversely W u(P, Ft). This implies that Vǫ meets H(P, Ft) for all ǫ > 0.
Hence X̃ (thus X) belongs to H(P, Ft), ending the proof of the theorem.

Scholium 7.2. The arguments above imply that every point in {0} × (0, 1) × {0} is
contained in H(P, Ft) for small t < 0. In fact, the same argument also works for central
segments contained in W s(P, Ft) ∩W u(Q, Ft) whose extremes are homoclinic points of Q
and P . Note that there are infinitely many segments of that type.

7.2 H(P, Ft) ⊂ H(Q, Ft)

Theorem 7.3. For every t < 0 small enough, the homoclinic class H(P, Ft) of P is
contained in the homoclinic class H(Q, Ft) of Q.

Proof. To prove the theorem, consider a transverse homoclinic point X of P . Replacing
X by some forward iterate of it, we can assume that X = (xs, xc, 0), xs ∈ [0, 1] and xc > 0.
The definition of Ft and the geometry of the cycle imply that there is small ǫ > 0 such
that either

{xs} × [xc − ǫ, xc) × [0, 1/6] ⊂ W u(Q, Ft), or

{xs} × (xc, xc + ǫ] × [0, 1/6] ⊂ W u(Q, Ft).

Assume that the first case (the other case is similar) holds. We will prove that, for
every big n, the forward orbit of Wn = {xs} × [xc − 1/n, xc)× [0, 1/n] transversely meets
[0, 1] × {0} × {0} ⊂ W s(Q, Ft). Therefore Wn ∩ H(Q, Ft) 6= ∅. Since Wn can be taken
arbitrarily small and close to X, this will conclude the proof of the theorem.

We need the following two lemmas:

Lemma 7.4. Consider small t < 0. For every small ǫ > 0 and every disk W = {as} ×
[ac − ǫ, ac + ǫ] × [0, ǫ], with ac > 0, there is m > 0 such that F m

t (W ) contains a complete
u-strip S±(ās, I), where I ⊂ (0, 1).

Proof. To prove the lemma, we consider forward iterations of W by Ft. We need that
some of these iterations contain a well located disk (i.e., a disk whose central coordinates
are in (0, 1)). For this we need the following claim.
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Claim 7.5. Consider t < 0. Then there is xt
0 ∈ [0, 1] such that (xt

0, f1,t(f0(t)), 0) is a
transverse homoclinic point of P and {xt

0} × {f1,t(f0(t))} × [0, 1] ⊂ W u(P, Ft), where
f1,t(f0(t)) ∈ (0, 1).

The lemma follows immediately from the claim considering forward iterates of W ,
noting that Ft expands in the z-direction and preserves the product structure and using
the λ-lemma. More precisely, the λ-lemma implies that F m

t (W ) accumulates to W u(P, Ft),
therefore, for large m, F m

t (W ) contains disks close to {xt
0} × {f1,t(f0(t))} × [0, 1]. Since

f1,t(f0(t)) = f1,t(f0(f1,t(0))) ∈ (0, 1) this provides the announced complete u-strip with
I ⊂ (0, 1).

Proof of the claim. By Remark 4.1, {0} × {1} × [0, 1] ⊂ W u(P, Ft). We have

{3/4} × {t} × [0, 1/6] ⊂ Ft({0} × {1} × [5/6, 1]) ⊂ W u(P, Ft).

Note that

{λ0 3/4} × {f0(t)} × [0, 1] ⊂ Ft({3/4} × {t} × [0, 1/6]) ⊂ W u(P, Ft).

Finally,

{xt
0} × {f1,t(f0(t))} × [0, 1/6] ⊂ Ft({λ0 3/4} × {f0(t))} × [5/6, 1]) ⊂ W u(P, Ft),

for some xt
0 ∈ [0, 1]. Note that, if t is small enough,

f1,t(f0(t)) = σ (1 − f0(t)) + t ∈ (0, 1).

The claim follows noting that [0, 1] × (0, 1] × {0} is contained in W s(P, Ft).

The proof of the lemma is now complete.

Lemma 7.6. Consider small t < 0 and any complete u-strip S = S±(a, I), where I ⊂
(0, 1). Then there is ℓ such that F ℓ

t (S) transversely meets W s
loc(Q, Ft) = [0, 1]×{0}×{0}.

Proof. By Proposition 3.15 there are a point x ∈ I and a block ̺ = [i0, i1, . . . , ik] of Σ+
11

such that Φ̺,t(x) = 0. Moreover, we can assume that ik = 0 (recall that f0(0) = 0). By
shrinking I if necessary, condition (D4) implies that there is ā ∈ (0, 1) such that

F k+1(S±(a, I)) ⊃ {ā} × {Φ̺,t(I)} × [0, 1] ⊃ {ā} × {0} × [0, 1].

This concludes the proof of the lemma taking ℓ = k + 1.

We are now ready to finish the proof the theorem. Consider Wn as above. By
Lemma 7.4, there is a positive iterate F m

t of Wn which contains a complete u-strip
S = S±(x̄s, I) with I ⊂ (0, 1). By Lemma 7.6 there is ℓ such that F ℓ

t (S) transversely
meets W s

loc(Q, Ft). Therefore F m+ℓ
t (Wn) transversely meets W s

loc(Q, Ft). This conclude
the proof of the theorem.
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