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1 Introduction

This paper is devoted to the analysis of the dynamical consequences of C 1-non-dominated dynamics
and to explain the generation of such non-dominated dynamics.

We begin by discussing briefly Smale’s density conjecture for hyperbolic dynamics (the C r-
diffeomorphisms satisfying the Axiom A and the no-cycles condition form a dense subset of Diffr(M),
where M is a closed manifold)1. Nowadays, it is known that this conjecture is false for manifolds of
dimension bigger than or equal to three in any topology and for C r surface diffeomorphisms when
r ≥ 2. The conjecture is true in dimension one (any C r-topology, r ≥ 1). Finally, it remains open
for C1-diffeomorphisms defined on surfaces.

In very rough terms, the Axiom A condition means that the periodic points are dense in the
whole non-wandering set, that they are all hyperbolic, and, moreover that the hyperbolic structures
on these periodic points (stable and unstable directions) fit together nicely. Due to dimensional rea-
sons, the proof of Smale’s conjecture is rather simple for circle diffeomorphisms: the non-wandering
set (typically) consists of finitely many hyperbolic (attracting or repelling) periodic points and there
are no homoclinic phenomena. Thus it is not necessary to glue hyperbolic structures of periodic
points. In higher dimensions, three different sort of obstructions appear for gluing these hyperbolic
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structures: (i) lack of domination or/and arbitrarily small angles between the invariants stable and
unstable directions of periodic points, (ii) dimension variability, that is, coexistence in the same
elementary piece of dynamics (homoclinic class) of saddles having different indices (dimension of
the unstable direction), and (iii) existence of infinitely many elementary pieces of dynamics, the so-
called Newhouse’s coexistence phenomenon. We will see that in many cases the lack of domination
and the coexistence phenomenon occur simultaneously and that there is a strong relation between
them. Let us also observe that the dimension variability can only occur in manifolds of dimension
greater than or equal to three.

Let us first briefly outline the proof of Smale’s conjecture for circle diffeomorphisms. For sim-
plicity, let us consider diffeomorphisms f preserving the orientation, f ∈ Diff+,r(S1), r ≥ 1. First,
one has that the diffeomorphisms f having rational rotation number ρ(f) are dense in Diff+,r(S1).
Recall that a diffeomorphism has rational rotation number if, and only if, it has some periodic
orbit. Note also that a periodic point can be made hyperbolic after an arbitrarily small pertur-
bation. These two facts imply that the diffeomorphisms having rational number contains an open
and dense subset H of Diff+,r(S1). Moreover, the properties of the rotation number (in fact, the
existence of hyperbolic periodic points) imply that the set H can be chosen such that the rotation
number is locally constant in H. The next step is to see that the primary periods of the periodic
points of diffeomorphisms f ∈ H are bounded (in fact, the same), thus every periodic point of f
can be made hyperbolic after an arbitrarily small perturbation. This, in particular, implies that
there are only finitely many periodic points.

The final step is to see that, in this case, the non-wandering set of f is just the union these
finitely many periodic orbits. Indeed, given any attracting orbit of f note that its stable manifold
consists of finitely many open intervals whose boundary consists of periodic orbits (which are
necessarily repelling by the hyperbolicity hypothesis). It is now easy to see that the complement
of the union of the stable manifolds of the finite set of attracting orbits of f consists of (finitely
many) repelling orbits. This immediately implies that the non-wandering set of f is a finite set
of hyperbolic periodic points. Indeed, this implies the density of Morse-Smale systems for circle
diffeomorphisms. Note that in dimension one the periodic points are either attracting or repelling,
thus there are no cycles.

We observe that the of proof the density of Axiom A maps of the interval is much more intricate
(this is due to the existence of homoclinic phenomena and critical points). Firstly, Kozlovski proved
in [26] that Axiom A maps are dense in the space of Ck unimodal interval maps, for all k ∈ N.
Secondly, Shen proved in [42] that Axiom A maps are dense in the space of C 2 maps of the interval
endowed with the C2-topology. Finally, the general case (Axiom A maps are dense in the space of
Cr maps of the interval, any r ≥ 1) was settled by Kozlovski-Shen-van Strien in [27]. Previously,
[24, 28] proved the density of Axiom A maps in the family of real quadratic polynomials. The
proof of these results involve sophisticated tools as, for example, quasi-conformal deformations
and the Milnor-Thurston kneading theory. These results are a outstanding contribution toward
a positive answer to the question of the density of hyperbolicity for interval maps. Indeed, a
better understanding of geometric aspects of the dynamics and the development of a theory of
quasi-conformal deformations brought a significant progress to this subject in recent years, which
culminated with the works mentioned above. It is worth mentioning that a conjecture of complex
density of hyperbolicity was stated by Fatou around 1920 with his belief that most rational complex
maps are expanding on their Julia set.
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In Section 2, we review two different kind of counter-examples to the conjecture of Smale and
outline some recent progress in the case of C1 surface diffeomorphisms. We begin in Section 2.1
by presenting the counter-examples related to the dimension variability (chronologically the first
ones and due in the C1-case to Abraham-Smale, [3]): there are two transitive hyperbolic sets Λf

and Σf having different indices (dimension of the unstable bundle, note that the transitivity of the
sets implies that the dimension of the unstable bundle is constant in each hyperbolic set) which
are related in a robust way by a (heterodimensional) cycle: for every diffeomorphism g close to
f , the hyperbolic continuations Λg and Σg of Λf and Σf are such that the stable manifold of
Λg meets the unstable one of Σg and vice-versa. This sort of robust cycles are displayed in any
Cr-topology, r ≥ 1, in any manifold of dimension at least three, see [14]. We will see in Section 3
how heterodimensional cycles associated to a pair of hyperbolic saddles (i.e., P and Q are saddles
having different indices with W u(P )∩W s(Q) 6= ∅ and W s(P )∩W u(Q) 6= ∅) generate robust cycles
as the ones above. Indeed, heterodimensional cycles will be a key ingredient in most constructions
of this paper.

In Section 2.2, we study the counter-examples associated to C 2-robust tangencies (a special case
of lack of domination). These examples exhibit C 2-robustly non-dominated dynamics, the main
topic of this note. We discuss Newhouse’s construction of (non-trivial) hyperbolic sets Λf whose
stable and unstable manifolds exhibit tangencies in a robust way (Theorem 1): for every diffeomor-
phisms g which is C2-close to f , there are points x, y ∈ Λg such that the stable leaf of x is tangent
to the unstable leaf of y. This construction involves distortion estimates and it is typically C 2. We
see how this construction is closely related to homoclinic bifurcations and generates infinitely many
sinks and/or sources in a persistent way (Newhouse’s coexistence phenomenon). We will discuss
strong forms of the coexistence phenomenon in the C 1-setting (see Sections 4 and 5) and study its
relation to the lack of domination.

Finally, in Section 2.3, we discuss the current state of Smale’s conjecture for C 1-surface diffeo-
morphisms. Let us observe that for proving the conjecture it is not enough to prove the hyperbolicity
of each homoclinic classes (of course, this is a necessary condition). A priori, a diffeomorphism
may have infinitely homoclinic classes being hyperbolic with some persistence (a special case of the
coexistence phenomenon). We present a trichotomy result for Smale’s conjecture involving the con-
ditions (i) Axiom A plus no-cycles, (ii) persistent homoclinic tangencies, and (iii) infinitely many
hyperbolic homoclinic classes, see Theorem 2. Finally, for operating reasons and bearing in mind
some recent results, it is interesting to split Smale’s conjecture for C 1 surface diffeomorphisms into
three sub-conjectures (see Conjecture 1). Positive answers to these small conjectures would imply
the initial conjecture.

In Section 3, we study the dynamics at heterodimensional cycles. We see how these cycles
generate C1-robustly non-hyperbolic homoclinic classes (i.e., a diffeomorphism f with a saddle Pf

such that, for any g close to f , the homoclinic class of the saddle Pg is not hyperbolic, indeed it
contains saddles with different indices) and robust cycles as the ones above, see Theorems 3 and 4.

Using heterodimensional cycles, we get a simple form of the coexistence phenomenon in the
C1-topology for three manifolds (analogous to the one obtained by Newhouse for C 2 surface dif-
feomorphisms): existence of an open set U and a residual subset R of U such that every f ∈ R has
infinitely many sinks and/or sources.

A relevant point here is that this construction does not involve explicitly homoclinic tangencies
(although such tangencies are displayed) but it is related to the generation of homoclinic classes
which do not admit any dominated splitting. In fact, this construction of non-dominated homoclinic
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classes is the main motivation behind the results in the next sections.

In Section 4, we discuss a dichotomy weak hyperbolicity versus coexistence phenomenon for C 1-
generic diffeomorphisms (i.e., diffeomorphisms in a residual subset of Diff1(M)), see Theorem 5.
This implies that every homoclinic class of a C 1-generic diffeomorphisms which does not admit any
dominated splitting is contained in the closure of an infinite set of sinks or sources.

Strong forms of the coexistence phenomenon associated to special types of non-dominated homo-
clinic classes are discussed in Section 5, see Theorem 6. In Theorem 7 we present the main argument
in these constructions: some non-dominated homoclinic classes generate periodic dynamics close
to the identity (the so-called universal dynamics).

In Section 4, we also discuss some ingredients in the proof of Theorem 5 (as the transitions for
homoclinic classes) and explain how the absence of domination generates sinks and sources in the
two-dimensional case (this allows to present some of the ideas in the proofs avoiding technicalities)

Finally, in Section 6, we introduce a sort of bifurcation which generates in a natural way
non-dominated dynamics (thus the coexistence phenomena): heterodimensional tangencies, see
Theorem 8. In rough terms, in a manifold of dimension three, we consider a homoclinic class
containing a saddle P whose stable manifold is two dimensional and a saddle Q whose unstable
manifold is two dimensional, a heterodimensional tangency means that these two manifolds have
non-transverse intersections. We belief that this bifurcation plays in the partially hyperbolic setting
a role similar to the one of homoclinic tangencies in the hyperbolic context (a way for crossing the
boundary of hyperbolicity) describing a natural transition from dynamics with some hyperbolicity
to non-dominated dynamics. Indeed, these heterodimensional tangencies are not well understood
and its bifurcation theory is an open research subject.

2 Around Smale’s density conjecture: robust cycles

In [45], Smale conjectured the density of hyperbolic dynamics among diffeomorphisms. This con-
jecture holds in the one-dimensional settingIn higher dimensions either this conjecture does not
hold (in the C1-topology for manifolds of dimension n ≥ 3, and in the C r-topology, r ≥ 2, for
any dimension n ≥ 2) or it remains open (for C1-surface diffeomorphisms). In fact, some counter-
examples of different nature were given to this conjecture. In this section, we analyze some of these
counter-examples, considering first the C1-ones. We close this section by discussing recent results
about this density conjecture for C1-surface diffeomorphisms.

2.1 Heterodimensional cycles and dominated dynamics

A natural (and the most usual) strategy for proving the hyperbolicity of a set is to begin by
considering its hyperbolic periodic points. These points have a natural hyperbolic structure given
by the eigenspaces. Next one checks if these hyperbolic structures fit together nicely and if they can
be extended to the closure. This leads to the notion of Axiom A diffeomorphism: the periodic points
of the diffeomorphism f are dense in its non-wandering set Ω(f) and this set is hyperbolic. In this
Axiom A case, the spectral decomposition theorem ([32]) claims that the non-wandering set splits
into finitely many pairwise disjoint sets Ω(f) = Λ1(f)∪· · ·∪Λn(f), where each Λi(f) is hyperbolic,
transitive, and locally maximal. The sets Λi are the basic sets of the spectral decomposition of f .
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The first sort of counter-examples (in the context of C 1-diffeomorphisms) to the density conjec-
ture was initiated with the construction by Abraham-Smale in [3]. The authors considered a four
dimensional manifold M 4 and constructed an open set C(M 4) of the space of C1-diffeomorphisms
Diff1(M4) of M4 such that every f ∈ C(M 4) has two transitive hyperbolic sets Λf and Γf of dif-
ferent index (dimension of the unstable bundle) related by a cycle: the unstable manifold of Λf

intersects the stable one of Σf and vice-versa. Moreover, one of these intersections is transverse.
This dynamical configuration prevents the diffeomorphisms from being Axiom A. Otherwise, both
sets should be contained in some basic set of the spectral decomposition. Noting that all the
periodic points of a transitive hyperbolic set have the same index one gets a contradiction.

The Abraham-Smale’s construction leads to the following definition:

Definition 2.1 (Robust heterodimensional cycles). A diffeomorphism f has a heterodimen-
sional cycle associated to the (transitive) hyperbolic sets Γ and Σ of f if:

1. the indices of the sets Γ and Σ are different;

2. the stable manifold of Γ meets the unstable manifold of Σ and the same holds for the stable
manifold of Σ and the unstable manifold of Γ.

The heterodimensional cycle of f associated to the sets Γ and Σ is C r-robust if there is a Cr-
neighbourhood U of f such that any diffeomorphism g ∈ U has a heterodimensional cycle associated
to the hyperbolic sets Γg and Σg, where Γg and Σg are the continuations of Γ and Σ for g.

Clearly, heterodimensional cycles can only occur in manifolds of dimension greater than or
equal to three. Moreover, by the Kupka-Smale genericity theorem (generically, periodic points are
hyperbolic and their invariant manifolds are in general position) robust cycles cannot be associated
to trivial hyperbolic sets (saddles).

In the construction in [3], the non-wandering set does not support a hyperbolic splitting but it
exhibits some form of weak hyperbolicity, called partial hyperbolicity and defined as follows.

Definition 2.2 (Dominated and partially hyperbolic splittings).

• An f -invariant set Λ has a dominated splitting if the tangent bundle TΛM over Λ splits into
two Df -invariant bundles E and F , TΛM = E ⊕ F , whose fibers Ex and Fx have constant
dimensions, and there exists an integer ` ≥ 1 such that, for every point x ∈ Λ and every pair
of unit vectors u ∈ Ex and v ∈ Fx it holds that

‖Df `(x)u‖ ≤
1

2
‖Df `(x) v‖.

In this case, we say that splitting is `-dominated and that F dominates E.

• If the dominated splitting TΛM = E⊕F is such that one of the bundles is uniformly hyperbolic
we say that it is partially hyperbolic.

Let us mention some important properties of dominated splittings that we will use in this paper
(for details see, for instance, [11, Appendix B] and for a survey on the dynamics of sets having
dominated splittings see [40]).

1. (continuous dependence of the fibers) The fibers Ex and Fx of the dominated splitting depend
continuously on the point x ∈ Λ.

5



2. (bounded angle) The angle between the bundles Ex and Fx, x ∈ Λ, is uniformly bounded
away from below.

3. (extension to the closure) Suppose that E ⊕ F is a dominated splitting defined on an f -
invariant set Λ. Then there is a dominated splitting E ′ ⊕F ′ defined on the closure of Λ such
that Ex = E′

x and Fx = F ′
x, for all x ∈ Λ.

The construction in [3] was the first one of a long list of counter-examples to Smale’s conjecture
for C1-diffeomorphisms. In these constructions, the non-wandering set is not hyperbolic but it
has a dominated splitting (in some cases the splitting is partially hyperbolic). First, Simon, [44],
performed a similar construction to the one in [3] in the three torus. Later Shub, [43], and Mañé,
[29] proved that in these constructions one can take Ω(f) being the whole manifold. Finally,
[5, 12] gave new kind of counter-examples of different nature involving the notion of blender and
heterodimensional cycles. We will analyze this concept and the dynamics at heterodimensional
cycles in Section 3.

More recently, for manifolds M of dimension 3, in [6, 8] a different kind of open sets U of
Diff1(M) of non-hyperbolic diffeomorphisms was constructed (these constructions can be carried out
in higher dimensions straightforwardly considering normally hyperbolic sub-manifolds). The open
set U contains a residual set R of diffeomorphisms f having infinitely many sinks or sources. In fact,
the set U can be constructed having a residual subset R of diffeomorphisms having simultaneously
infinitely many sinks, infinitely many sources, and infinitely many (non-trivial) minimal sets. Recall
that an invariant set Σ is minimal if the orbit of any point of Σ is dense. The nature of these
examples is completely different of those mentioned above. In fact, they are related to robustly
non-dominated dynamics, the main subject of this note. We will discuss these constructions in
Section 4 and 5. Actually, the constructions in [6, 8] were inspired and motivated by Newhouse’s
construction of C2-diffeomorphisms with infinitely many sinks we will discuss in the next section.

2.2 Homoclinic tangencies and non-dominated dynamics

We mow describe the counter-example to the density conjecture given by Newhouse in the context
of C2-surface diffeomorphisms. This kind of construction was later generalized by Palis-Viana, [38],
and Romero, [41], to higher dimensions. In the Newhouse’s construction, the non-wandering sets
of the diffeomorphisms do not admit any dominated splitting: the non-wandering set contains a
sequence of hyperbolic periodic saddles Pn such that, for each n, the angle between the stable and
unstable directions of Pn is less than 1/n. Observe that if E ⊕ F is a dominated splitting of a
surface diffeomorphism and P is a saddle then EP = Es

P and FP = Eu
P . Recalling that the angles

between the bundles of a dominated splitting are bounded away from zero, one gets the claim.
These constructions rely on the notions of persistent and robust homoclinic tangencies:

Definition 2.3 (Persistent and robust homoclinic tangencies). Let f be a diffeomorphism
defined on a closed manifold M .

• The diffeomorphism f has a Cr-persistent homoclinic tangency associated to a hyperbolic
periodic saddle P if there exist a C r-neighbourhood U of f and a dense subset D of U such
that, for every diffeomorphisms g ∈ D, the continuation Pg of P has a homoclinic tangency
(i.e., the stable and unstable manifolds of Pg have some non-transverse intersection).
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• Let Λ be a transitive hyperbolic set of f . We say that Λ has a C r-robust tangency if there
are a Cr-neighbourhood U of f and a constant T > 0 such that for any g ∈ U the local stable
manifold of size T of Λg, W s

T (Λg), and the unstable manifold of size T of Λg, W u
T (Λg), have

a tangency. Here Λg is the hyperbolic continuation of Λ for g.

As in the case of heterodimensional cycles, robust homoclinic tangencies cannot be associated
to trivial hyperbolic sets.

A key result about homoclinic tangencies of C2-surface diffeomorphisms is the following:

Theorem 1 (Newhouse, [33, 34]). Let M be a closed surface.

• There is an open set T of Diff2(M) consisting of diffeomorphisms with C2-robust tangencies.

• There is a residual subset S of T of diffeomorphisms with infinitely many sinks or sources.

• Consider a C2-diffeomorphism f with a homoclinic tangency associated to a saddle. Then
there are an open set U of Diff2(M) whose closure contains f and a residual subset R of U
such that every diffeomorphism in R has infinitely many sinks or sources.

We say that a diffeomorphism f having a Ck-neighbourhood U such that there is a residual
subset of U of diffeomorphisms with infinitely many sinks or sources satisfies the (Newhouse’s)
coexistence phenomenon.

For a wide discussion and a exposition of these results we refer to [37]. For a survey about
features associated to homoclinic tangencies, see [36] and [40, Chapter 3].

We now discuss briefly the first two items of Theorem 1. The proof of this theorem relies on the
notions of homoclinic tangency associated to a saddle and of thickness of a Cantor set. We begin
by defining precisely thickness and stating the so-called Gap Lemma, which relates the sum of the
thickness of a pair of Cantor sets of R and the intersection (also relative position) of these sets.

The thickness of a Cantor set of R is a fractal dimension, defined in the same spirit as Hausdorff
dimension and limit capacity. It describes the relation between the lengths of the intervals re-
moved in the construction of a Cantor set and the lengths of the two remaining adjacent connected
components. More precisely, consider a Cantor set K ⊂ R whose convex hull is the interval [a, b].
A presentation of the Cantor set K is an enumeration of the connected components {Gi}i∈N of
[a, b] \K. We call these components gaps of K. Let F0 = [a, b] and, for i ≥ 1, we let Fi = Fi−i \Gi.
Note that each set Fi is the union of (i + 1) pairwise disjoint closed intervals. Let B r

i and B`
i the

connected components of Fi intersecting the boundary of Gi. We call these intervals bridges of Gi.
The thickness of the presentation {Gi} of K is

τ(K, {Gi}) = inf
i≥1

{

min
|Br

i |

|Gi|
,
|B`

i |

|Gi|

}

.

Finally, the thickness of K, τ(K), is the supremum of τ(K, {Gi}) taken over all presentations {Gi}
of K. In our context, the importance of thickness is given by the next lemma.

Lemma 2.4 (Gap Lemma, [33, 37]). Let K1 and K2 be Cantor sets of R with τ(K1) ·τ(K2) > 1
and such that their convex hulls are non disjoint. Then either K1 ∩ K2 6= ∅ or K1 is contained in
a gap of K2 or vice-versa.
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Figure 1: A thick horseshoe

We are now ready to sketch the construction of diffeomorphims having robust tangencies. Con-
sider, for simplicity, a diffeomorphism f having a linear horseshoe Λ defined on a rectangle of R

2

as in Figure 1 (the vertical direction is expanding and the horizontal one is contracting). Consider
the saddle P = (0, 0) and the Cantor sets defined by

Λu = ({0} × [0, 1]) ∩ Λ = W u
loc(P ) ∩ Λ and Λs = ([0, 1] × {0}) ∩ Λ = W s

loc(P ) ∩ Λ.

These Cantor sets are dynamically defined (for the precise definition and properties see [37, Chapter
4.1]). More precisely, suppose that the rectangle is [0, 1]2 and that the expansion and contraction
rates are σ > 1 and 0 < λ < 1, then the Cantor Λu is the set of points (0, x), x ∈ [0, 1], such that
Φi

σ(x) 6∈ (1/σ, 1 − 1/σ) for all i ≥ 0, here Φσ is the affine map in Figure 2.

Figure 2: The dynamically defined set Λu

We say that the interval G = (1/σ, 1−1/σ) is the first generation gap of the Cantor set Λu. The
sets [0, 1/σ] and [1 − 1/σ, 1] are the initial bridges of Λu. Further gaps of the Cantor sets are the
pre-images of G by Φσ (in Figure 2 are depicted the gaps of second generation). The bridges are
the connected components of [0, 1] obtained after removing the corresponding gaps. In this linear
case, due to the affinity of the Cantor sets, the thickness of Λu and Λs can be easily calculated,

τ(Λu) =
1/σ

1 − 2/σ
and τ(Λu) =

λ

1 − 2λ
.

This means that if λ and σ are both close to one then the thickness τ(Λu) and τ(Λs) are both large.
Thus the thickness of Λ, defined as the sum τ(Λ) = τ(Λs) + τ(Λu), is large (in particular, bigger
than one). We say that Λ is a thick horseshoe if τ(Λ) > 1.

Observe that the local stable manifolds of Λ are horizontal segments and the local unstable
manifolds are vertical ones. We modify the dynamics of f outside the horseshoe Λ to create a

8



point z of tangency between the stable and the unstable manifolds of the saddle P . After this
perturbation, locally at the point z = (z1, z2), the stable manifold of P is a horizontal segment γs

and the unstable one is a parabola γu. The perturbation is depicted in Figure 3.

PSfrag replacements
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f

z

Figure 3: A horseshoe with a tangency

The next step is to unfold the tangency, considering an arc of diffeomorphisms (ft)t≥0, f0 = f ,
preserving the horseshoe Λ and the local stable manifold of P containing z, and translating the
parabolic segment γu in the vertical direction by the vector (0, t) (that is, the parabolic curve
γu

t = {(x1, x2 + t), (x1, x2) ∈ γu} is contained in the unstable manifold of P for ft). See Figure 4.
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Figure 4: Unfolding of the tangency

We now explain how the persistence of tangencies arises. Observe that, for each t, the horseshoe
Λ is the product of the Cantor sets Λs = Λ ∩ W s

loc(P, ft) and Λu = Λ ∩ W u
loc(P, ft) (in fact, in this

case these Cantor sets do not depend on t). Consider the curve Υ = {z1}× [−ε,+ε] containing the
tangency point z and, for each t ≥ 0, the Cantor sets

Ku(t) = W s(Λu, ft) ∩ Υ = W s(Λ, ft) ∩ Υ and Ks(t) = Ks = W u(Λs, ft) ∩ Υ = W s(Λ, ft) ∩ Υ.

Then
Ku(0) ⊂ Υ+ = {z1} × [0,+ε] and Ks(0) ⊂ Υ− = {z1} × [−ε, 0].

The same construction for parameters t > 0 gives

(z1, 0) ∈ Ku(t) ⊂ {z1} × [0,+ε] and (z1, t) ∈ Ks(t) ⊂ {z1} × [−ε, t].

One now has the sets Ks(t) and Ku(t) are linked, meaning that their convex hulls have non-
empty intersection: the point (z1, 0) belongs to the convex hulls of Ks(t) and Ku(t). A key point
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now, involving the fact that the thickness is invariant by bi-Lipschitz transformations, is that the
thickness of the Cantor sets Ku(t) and Ks(t) are equal to the thickness of Λu and Λs. Thus if
we start our construction with a linear horseshoe with τ(Λs) + τ(Λu) > 1 (one can assume this
hypothesis by the comments above), noting that the sets Ku(t) and Ks(t) are linked, the Gap
Lemma implies that Ku(t) ∩ Ks(t) 6= for all small t ≥ 0.

The construction ends by observing that an intersection between Ku(t) and Ks(t) corresponds
to a tangency of Λ for ft.

It remains to explain why the previous construction is C 2-robust: consider t > 0 such that
Ku(t) ∩ Ks(t) 6= ∅, then there is a C2-neighborhood V of ft in Diff2(M) such that for every g ∈ V
the continuation Λg of Λ for g has a tangency (i.e., W s(Λg, g) and W u(Λg, g) have some non-
transverse intersection). The key point here is that the thickness of the Cantor sets involved in the
construction depends continuously (see [37] for the details). That is the maps

τ i : V → R, g 7→ τ i(g) = τ(W s
loc(Pg, g) ∩ Λg), i = s, u,

are continuous (here Pg and Λg are the continuation of the saddle P and the hyperbolic set Λ for g).
This means that we can repeat the procedure above for the diffeomorphism g close to ft, obtaining
a tangency between W s(Λg, g) and W u(Λg, g). One also has that, by construction, these tangencies
occur in segments of uniformly bounded size of the local stable and local unstable manifolds of the
hyperbolic sets.

The previous arguments are key ingredient in Newhouse’s construction of locally residual sets of
diffeomorphisms having infinitely many sinks or sources in Theorem 1. The other crucial ingredient
is that every surface diffeomorphism f with a homoclinic tangency associated (say) to a dissipative
saddle P (i.e., the absolute value of the product of the eigenvalues of the saddle is less than one) is
C2-approximated by diffeomorphism g having a periodic sink Q whose orbit is arbitrarily close to
the one of P , see [33]. This assertion can also be proved observing that the unfolding of a homoclinic
tangency generates horseshoes, and that this generation accomplishes a cascade of period doubling
bifurcations and sinks (see [47] and [37, Chapter 3.3]). An intuitive explanation of the creation
of these sinks is the following: (after a re-scaling) the restriction of the returns of ft close to the
tangency are close to the one-dimensional quadratic family, and this family generates sinks. For
details, see [37, Chapter 3.4].

Consider now an open set T of diffeomorphisms f having robust tangencies as the set V above
(i.e., there is a continuous map Λ defined on V which associates to each g ∈ V a transitive hyperbolic
set Λg such that W s(Λg, g) and W u(Λg, g) have some non-transverse intersection). First, one checks
that there is a dense subset D of T of diffeomorphisms g with homoclinic tangencies associated
to some saddle of Λg (assume that these saddles are dissipative). To get a residual subset S of T
of diffeomorphisms with infinitely many sinks, note first that to have a sink is an open property.
Thus the set Sk of diffeomorphisms with k (different) sinks is open. To prove Theorem 1 it suffices
to check that each Sk is dense in T and to take S = ∩Sk. By construction, the set S is residual in
T and every diffeomorphism f of S has infinitely many sinks. The density of the sets Sk follows
inductively, it is enough to recall that, by the comments above, every diffeomorphism in the dense
set D can be approximated by a diffeomorphism with a (new) sink of arbitrarily large period. The
density of D in U gives the density of S1. The inductive pattern is now clear: to construct Sk+1

from Sk one produces new homoclinic tangencies (this is possible by the density of D) and by
unfolding the tangency one gets a new sink preserving the previous ones.
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2.3 Smale’s conjecture for C
1 surface diffeomorphisms

We next discuss the density conjecture of Smale for C 1-surface diffeomorphisms. We first recall
that, in this case, this conjecture still remains open. In view of the previous results, one is tempted
to disprove this conjecture by constructing a C 1-open set of diffeomorphisms with robust tangencies.

Before trying to do that, we observe that the ingredients of Newhouse’s construction are typically
C2 (bounded distortion and fractal dimensions). Moreover, in [46] Ures proved that hyperbolic sets
of C1-generic diffeomorphisms have zero thickness. This is a first indication that the constructions
above cannot be carried directly to the C1-topology. Moreover, Moreira recently announced that
dynamically defined Cantor sets defined by C1-maps cannot have robust intersections, see [31].
Since dynamically defined Cantor sets are archetypes of hyperbolic sets of surface diffeomorphisms
(obtained by quotienting along the invariant manifolds) this result can be viewed as a strong
indication of the fact that, in the C1-topology and for surface diffeomorphisms, there are no robust
homoclinic tangencies. Unfortunately, to prove the density conjecture it is not enough to see that
tangencies associated to hyperbolic sets never are robust. We now discuss this point. In [1] is
proved that there are two sort of difficulties for proving this conjecture.

Theorem 2 (Thrichotomy for Smale’s conjecture, [1]). Let M be a closed surface. There
are three disjoint open sets H, P, and W with

H∪ P ∪W = Diff1(M)

such that:

• H is the set of diffeomorphisms which satisfy the Axiom A and the no-cycle condition;

• P is the set of diffeomorphisms admitting a persistent homoclinic tangency associated to some
hyperbolic periodic saddle;

• W contains a residual subset GW such that every f ∈ GW has infinitely many homoclinic
classes, all of them being hyperbolic basic sets.

Recall that an Axiom A diffeomorphism f has a two-cycle (or shortly, a cycle) if there are two
basic sets Λi(f) and Λk(f) of the spectral decomposition of its non-wandering set Ω(f) such that
W s(Λi(f)) ∩ W u(Λk(f)) 6= ∅ and W u(Λi(f)) ∩ W s(Λk(f)) 6= ∅ 2.

Let us also recall that the homoclinic class of a saddle P of a diffeomorphism f , denoted by
H(P, f), is the closure of the transverse intersections of the invariant manifolds (stable and unstable
ones) of the orbit of P . A homoclinic class can be also (equivalently) defined as the closure of the
set of (hyperbolic) saddles Q homoclinically related to P (the stable manifold of the orbit of Q
transversely meets the unstable one of the orbit of P and vice-versa). In the Axiom A case, the
(non-trivial) basic sets in the spectral decomposition are homoclinic classes.

A natural question is whether the diffeomorphisms f ∈ P with persistent homoclinic tangencies
have robust tangencies. Consider the following two disjoint C 1-open sets Prob and P∞ of P:

• the set Prob consists of diffeomorphisms admitting a robust tangency associated to some
hyperbolic set;

2The general definition of cycle involves n basic sets Λ1, . . . , Λn such that, for each i ∈ {1, . . . , n}, it holds that
W u(Λi(f)) ∩ W s(Λi+1(f)) 6= ∅, where n + 1 ≡ 1
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• the set P∞ has a residual subset GP∞ such that for every g ∈ GP∞ and for any hyperbolic
set Λ of g, the invariant manifolds of Λ are transverse (even though g presents persistent
tangencies in the sense of Definition 2.3).

[1, Proposition 1.4] claims that the union of the sets Prob and P∞ is dense in P. The previous
results show that besides the existence of C1-robust tangencies two other different obstructions
can appear for a diffeomorphism f satisfying the Axiom A and no cycles property: the creation of
tangencies outside the homoclinic class (corresponding to diffeomorphisms in P∞) or the simultane-
ous existence (with some persistence) of diffeomorphisms with infinitely many different hyperbolic
homoclinic classes (corresponding to diffeomorphisms in GW).

Having in mind these results, [1] proposes to split the Smale’s conjecture into the following
three different conjectures:

Conjecture 1 (Splitting Smale’s conjecture for C 1-surface diffeomorphisms, [1]).

1. Every generic diffeomorphism of a compact surface whose homoclinic classes are all hyperbolic
satisfies Axiom A.

2. (No robust tangencies) Let Λ be a hyperbolic set of a diffeomorphism f of a compact surface.
Then, for any L > 0, there is a C1-perturbation g of f such that the local invariant manifolds
of size L of the hyperbolic set Λg (Λg is the continuation Λg of Λ for g) are transverse.

3. (Persistent tangencies imply robust tangencies) Any diffeomorphism f with persistent tan-
gencies associated to some saddle may be C1-approximated by diffeomorphisms with robust
tangencies.

By Theorem 2, a positive answer to these conjectures implies the Smale’s conjecture for surface
diffeomorphisms.

3 Heterodimensional cycles

In this section, we discuss the dynamics generated by heterodimensional cycles. We see that
the creation of such cycles is a natural mechanism for the generation of robustly non-hyperbolic
transitive sets (in fact, homoclinic classes). The assumptions here are not minimal, but we point
out that the dynamical behaviour depicted here is typical of a large class of heterodimensional
cycles, see [19, 7]. For a review on heterodimensional cycles, see [11, Chapter 6].

We consider diffeomorphisms f with a cycle associated to hyperbolic periodic saddles P and Q
(for simplicity, assume that these saddles are fixed points) such that

• (co-index 1) the saddles P and Q have indices p and q = p + 1, respectively,

• (general position: transverse intersection) the manifolds W s(P, f) and W u(Q, f) (of dimen-
sion n−p and p+1, n is the dimension of the ambient) meet transversely and this intersection
contains curves, and

• (general position: quasi-transverse intersection) the manifolds W u(P, f) and W s(Q, f) (of
dimension p and n − p − 1) intersects throughout the orbit of some point x and this inter-
section is quasi-transverse: TxW s(Q, f) ∩ TxW u(P, f) = {0̄} or, equivalently, TxW s(Q, f) +
TxW u(P, f) = TxW s(Q, f) ⊕ TxW u(P, f) and this sum has dimension n − 1.
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The cycles above are called co-index one cycles. Note that in dimension three every heterodimen-
sional cycle has co-index one. A heterodimensional cycle is depicted in Figure 5.

A result which illustrates heterodimensional cycles as a natural mechanism for C 1-robust non-
hyperbolic dynamics is the following:

Theorem 3 ([7]). Let f be a C1-diffeomorphism having a co-index one cycle associated to a
pair of hyperbolic saddles. Then there are diffeomorphisms arbitrarily C 1-close to f having robust
(heterodimensional) cycles.

This theorem generalizes some previous results in [19]. The proof of Theorem 3 involves recent
results on C1-generic dynamics and the idea of blender generated by a heterodimensional cycle,
developed in previous papers, [5, 19]. For a rough explanation of blenders, we need to review some
previous results about heterodimensional cycles.
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Figure 5: A heterodimensional cycle

We first see a theorem claiming that, after unfolding a heterodimensional cycle, the homoclinic
classes of the saddles P and Q in the cycle often explode and become intermingled (non-empty
intersection). Consider parametrized families (ft)t∈[−1,1] of diffeomorphisms unfolding the cycle:
we have f = f0 and there are disks Ku

t ⊂ W u(Pt, ft) and Ks
t ⊂ W s(Qt, ft) (of the same dimension

as W u(Pt, ft) and W s(Qt, ft)), depending continuously on t, such that Ku
0 ∩Ks

0 = {x}, where x is a
point of quasi-transverse intersection, and the distance between K s

t and Ku
t increases with positive

velocity when |t| increases. Here Pt and Qt denote the continuations for ft of P and Q.

Theorem 4 ([17, 14, 15]). There is a non-empty open set A of parametrized C∞-families of
diffeomorphisms (ft)t∈[−1,1] unfolding a heterodimensional cycle of f = f0, such that, for all small
positive t,

1. the transverse intersection between W s(Pt) and W u(Qt) is contained in the homoclinic class
of Qt;

2. the homoclinic class of Pt is contained in the homoclinic class of Qt.

The simplest case of diffeomorphisms with heterodimensional cycles in the theorem are obtained
as follows. Consider a diffeomorphism f defined on a three manifold (in this case, the indices of
the saddles P and Q in the cycle are one and two, respectively) such that the eigenvalues of Df(P )
and Df(Q) verify 0 < λs < λc < 1 < λu and 0 < βs < 1 < βc < βu, respectively. Moreover, the
transverse intersection between the two dimensional manifolds W s(P, f) and W u(Q, f) contains
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a curve γ (named connection) with endpoints P and Q. We also assume that the curve γ is
simultaneously transverse to the strong stable foliation of W s(P, f) and to the strong unstable
foliation of W u(Q, f) (the unique f -invariant one-dimensional foliations of W s(P, f) and W u(Q, f)
whose leaves through P and Q are tangent to the eigenspaces of λs and βu). In this case, we say
that the cycle is non-critical.
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Figure 6: A heterodimensional cycle and its unfolding

In this simplest case, a substantial part of the dynamics after the unfolding of the cycle is
essentially determined by the restriction of the bifurcating diffeomorphism f to the connection
curve γ. This claim is suggested by the series of papers [14, 18, 20], where the dynamics in the
sequel of the bifurcation (creation of the cycle) is reduced to the analysis of a system of iterated
functions generated by f and a translation. For an expository explanation of this dynamics see
[11, Chapter 6] and [21]. This one-parameter system of iterated functions plays a role somewhat
similar to the one of the quadratic family for homoclinic bifurcations, see [37, Chapter 3.4].

Finally, when the distortion of the restriction of f to the connection γ is small (in fact, the
definition of the open set A in Theorem 4 involves this property) the system of iterated functions
describing the dynamics is expanding. This is the key behind the distinctive property of heterodi-
mensional cycles, which is also the key for proving that after unfolding the cycle the homoclinic
classes of Pt and Qt are intermingled: for every small t > 0, the homoclinic class of Qt contains the
one of Pt.

Distinctive property: For every t > 0 and every 2-disk ∆ transverse to W s(P, ft), the stable
manifold W s(Q, ft) of Qt intersects transversely the disk ∆. Thus the closure of the one-dimensional
stable manifold W s(Q, ft) contains the two-dimensional stable manifold W s(Pt, ft) of Pt.

Heuristically, this means that the stable and unstable manifolds of Qt have both (topological)
dimension two. Therefore the saddle Qt behaves simultaneously as a point of indices one and two.
This is the main step for proving that the homoclinic classes of Pt is contained in the homoclinic
class of Qt.

The constructions in [14] of homoclinic classes containing (robustly) saddles having different in-
dices was generalized and systematized in [5], where the notion of blender was introduced. Roughly,
a blender is a topological plug depending only on semi-local properties, which guarantees that the
closure of the one dimensional stable manifold of a saddle of index 2 contains (C 1-robustly) the
two dimensional stable manifold of a saddle of index 2. For an expository construction of blenders,
see [11, Chapter 6.2].

We observe that topological dimension property of blenders (the dimension of the unstable
manifold of the blender is greater than its index) is a C 1-robust property. This property plays
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a role similar to the thick hyperbolic sets (recall Section 2.2) in the construction of C 1-robust
heterodimensional cycles in Theorem 3.

An important point in Theorem 4 is that the only assumption on the dynamics of the bifurcating
diffeomorphism f involved in the proof (besides the type of geometry of the curve γ ⊂ W s(P, f) ∩
W u(Q, f)) is that the restriction of f to the connection γ has small distortion. These conditions
are compatible with other hypotheses on the global dynamics of f . For instance, the saddle P can
be homoclinically related to a saddle P ′ of index one such the contracting eigenvalues of Df(P ′)
are conjugate and non-real. A similar situation can occur for Q. This dynamical configuration is
depicted in Figure 8.
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Figure 8: Generation of the coexistence phenomenon

In fact, assuming either the existence of some sectionally dissipative saddle (the modulus of the
product of any pair of multipliers is less than one) homoclinically related to P or the existence of
some sectionally expansive saddle homoclinically related to Q, [6] proved that dynamical configura-
tion in Figure 8 generates the C1-coexistence phenomenon: there is a C1-open set C and a residual
subset R of C such that every g ∈ R has infinitively many sinks/sources.

Observe that, under the hypotheses above, one has a C 1-open set C consisting of diffeomorphism
g such that

H(P ′
g, g) = H(Pg, g) ⊂ H(Qg, g) = H(Q′

g, g).
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We need the following lemma about the creation of intersections between invariant manifolds of
saddles in a transitive set:

Lemma 3.1 (Consequence of the Connecting Lemma, Hayashi, [25]). Let Σ be a transitive
set of a diffeomorphisms f containing a pair of saddles A and B. Then there is g arbitrarily C 1

close to f such that W s(Ag, g) ∩ W u(Bg, g) 6= ∅.

Assume, for instance, that the saddle Pf is sectionally dissipative. Applying first Lemma 3.1 to
the transitive set Σf = H(Qf , f) and the saddles Pf and Q′ ∈ Σf , we obtain a diffeomorphism g
close to f such that W s(Pg, g) and W u(Q′

g, g) have some transverse intersection. A new application
of the lemma gives that W u(Pg, g) and W s(Q′

g, g) have non-empty intersection. This provides a
dense subset D of C of diffeomorphisms g with heterodimensional cycles associated to Pg and Q′

g.
Using the cycle associated to Pg and Q′

g, one has that the stable manifold of Pg spirals around
the stable manifold of Q′

g. This allows us to get (after a perturbation) a tangency associated to
Pg. As in the case of surface diffeomorphisms, we see that such a tangency generates (by a C 1-
perturbation) a sink. This is done noting that (after a perturbation) one can assume that such a
tangency occurs in a normally contracting surface, thus one can think of this homoclinic tangency
as a two-dimensional one. We now can argue as in Section 2.2 to get a sink.

The previous arguments imply that the diffeomorphisms h of C having one sink form an open
and dense subset of C. We can now proceed inductively (exactly as in Section 2.2) proving that the
set Sk of diffeomorphisms of C having k sinks contains an open and dense subset of C. Now it is
enough to consider the intersection R = ∩kSk, which is a residual subset of C of diffeomorphisms
with infinitely many sinks.

In the next section, we will see that the dynamical configuration in Figure 8 is an archetypal
example of robustly non-dominated homoclinic class. We will deduce some consequences from this
lack of domination.

4 A dichotomy for homoclinic classes of C1-diffeomorphisms: weak

hyperbolicity or Newhouse’s coexistence phenomenon

In the previous section, given a three dimensional manifold M we constructed a C 1-open set C of
diffeomorphisms with (fixed) saddles P ′

f and Q′
f depending continuously on f such that:

N1) the index of P ′
f is one and Df(P ′

f ) has a pair of non-real contracting eigenvalues,

N2) the index of Q′
f is two and Df(Q′

f ) has a pair of non-real expanding eigenvalues,

N3) the homoclinic class H(P ′
f , f) of P ′

f is contained in the homoclinic class H(Q′
f , f) of Q′

f .

Assuming sectional dissipativeness or expansiveness of these saddles, we got a residual subset R of
C of diffeomorphisms with infinitely many sinks or sources.

The homoclinic classes satisfying (N1)–(N3) are examples of robustly non-dominated homoclinic
classes: for every g ∈ C, the homoclinic class Σg = H(Q′

g, g) does not admit any dominated splitting.
Otherwise, assume by contradiction that E⊕F is a dominated splitting of Σg such that (for instance)
E is one dimensional. Consider the stable bundle Es

P ′

g
of P ′

g (the eigenspace associated to the two

contracting eigenvalues). Then, necessarily (this follows from the domination of the splitting) the
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bundle E is contained in Es
P ′

g
, thus Dg(P ′

g) leaves invariant a one dimensional direction of Es
P ′

g
,

which is incompatible with the fact that Dg(P ′
g) has a pair of non-real contracting eigenvalues. The

contradiction follows similarly when the bundle F is one dimensional by considering the saddle Q ′
g

and its unstable direction.
In this section, we discuss the following result which generalizes the construction before:

Theorem 5 (C1-generic dichotomy for homoclinic classes, [9]). Let M be a closed manifold.
There is a residual subset R of Diff1(M) of diffeomorphisms f such that, for every saddle P of f ,
the homoclinic class H(P, f) of P satisfies the following dichotomy;

• (weak hyperbolicity) either H(P, f) has a dominated splitting,

• (coexistence phenomenon) or H(P, f) is contained in the closure of an infinite set of sinks or
sources of f .

In this theorem and in the weak hyperbolic case, if M is a surface then the homoclinic class
is hyperbolic (this was proved by Mañé in [30]). When the dimension n of the manifold is three,
then the splitting is partially hyperbolic (i.e., the one-dimensional bundle of the dominated splitting
is either uniformly contracting or uniformly expanding). In higher dimensions, n ≥ 4, there are
examples of homoclinic classes which can not be approximated by diffeomorphisms having sinks
or sources whose weak hyperbolic splitting is only dominated, see [12]. Finally, as we discuss in
the previous section, it is an open question whether for C 1-surface diffeomorphisms the coexistence
phenomenon can be eliminated.

4.1 Transitions for homoclinic classes

Recall that the homoclinic class H(P, f) of the saddle P can be defined as the closure of the
set of saddles Q which are homoclinically related to P (i.e., the stable manifold of the orbit of
P transversely meets the unstable manifold of the orbit of Q and the same holds for the stable
manifold of the orbit of Q and the unstable manifold of the orbit of P ). Noting that two saddles
which are homoclinically related have the same index, one has that the set of saddles of the same
index as P is dense in the whole homoclinic class of P . Using the saddles homoclinically related to
P one proves that a homoclinic class satisfies the following transition property.

The very rough idea of the transition property is the following. Consider two saddles P and
Q of the same index which are homoclinically related. These saddles are accumulated by other
hyperbolic periodic orbits (of the same index) whose orbits spend an arbitrarily large time nearby
P , thereafter nearby Q, and so on. In fact, the existence of Markov partitions gives that, fixing any
finite sequence of times, there is a periodic orbit expending the times of the sequence alternately
close to P and Q, respectively. Moreover, the transition time (between a neighbourhood of P
to neighbourhood of Q and vice-versa) of this orbit can be chosen bounded. This property will
allow us to scatter in the whole homoclinic class of P some properties of the periodic points Q
homoclinically related to P . The notion of transition translates this property into the language of
linear systems, leading to the concept of linear system with transitions.

For the precise definitions, we refer to [9, Section 1]. We only explain these transitions with an
example and some applications. Let ΣP the set of saddles of f homoclinically related to the saddle
P . Note that ΣP ⊂ H(P, f). We consider a periodic linear system (ΣP , f,A) of matrices (for each
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x ∈ ΣP , A(x) is a matrix in GL(n, R), n is the dimension of the ambient). To each point x ∈ ΣP

of period π(x) we associate a word

[M ]A(x) = (A(fπ(x)−1(x)), . . . , A(x));

having π(x) letters in GL(n, R). The matrix MA(x) is the product of the letters of the word
[M ]A(x). The interesting case for us occurs taking A(x) = Df(x). In this case, MA(x) is a matrix
of Dfπ(x)(x).

Consider now saddles x1, . . . , xk homoclinically related to P . For each pair (i, j) there is a
transition fni,j given by the dynamics of f from some neighbourhood of xi to some neighbourhood
of xj . Let [ti,j] be the matrix of derivative of fni,j in local coordinates. Select now a list of large
numbers α1, . . . , αk and consider the product of matrices

[MB ] = [tm,1] [MA(xm)]αm [tm−1,m] [MA(xm−1)]
αm−1 · · · [t1,2] [MA(x1)]

α1 .

Then there is a periodic point y homoclinically related to P whose matrix MA(y) is arbitrarily
close to [MB ]. The orbit of the periodic point y expends α1 iterates close to x1, then it goes to a
neighbourhood of x2 (this transition just involves a bounded number of iterations by f), it spends
α2 iterates close to x2, and so on. The orbit of y is depicted in Figure 9. In practical terms, this
means that one can multiply matrices corresponding to derivatives at different points, obtaining a
good approximation of the matrix of some saddle of the class.
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Figure 9: Transitions

The previous discussion can be summarized as follows: every non-trivial homoclinic class
H(P, f) has associated a periodic linear system with transitions: the basis ΣP is the set of saddles
homoclinically related to P and the linear maps are given by the derivatives of f , see [9, Lemma
1.9]. The case of transitions associated to saddles having different indices is analyzed in [10, Section
3.1].

An important consequence of the existence of transitions for homoclinic classes is the following.
Given a homoclinic class H(P, f), let PerR(P ) be the subset of the saddles Q homoclinically related
to P (thus PerR(P ) ⊂ H(P, f)) such that the eigenvalues of Df π(Q)(Q) are all real and positive
and have multiplicity one. Then there is a residual subset R of Diff1(M) such that, for every
f ∈ R and for every saddle P of f whose homoclinic class is not trivial, the set PerR(P ) is dense
in H(P, f) (this is a dynamical reformulation of [9, Lemma 4.16]). By the property extension to
the closure of dominated splittings, given f ∈ R, to prove that the homoclinic class H(P, f) has a
dominated splitting it is enough to see that there is a dominated splitting over PerR(P ). This allows
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us to consider the linear periodic system induced by the derivative of f on the set PerR(P ). The
advantage of this sub-system is that the expression of their linear maps are quite simple (using the
terminology in [9], one gets a diagonalizable linear system). Moreover, one also has a first natural
candidate for a dominated splitting over PerR(P ):

TPerR(P )M = H1 ⊕ H2 ⊕ · · · ⊕ Hn,

where n is the dimension of the ambient manifold and H1, . . . ,Hn are the eigenspaces of the saddles
(the eigenvalue associated to Hi+1 is greater than the one associated to Hi). Of course, in general
this splitting fails to be dominated, but one hopes to get a dominated splitting after grouping these
bundles in a suitable way.

The following holds, let

Ei = ⊕i
k=1Hk and Fi = ⊕n

k=i+1Hk,

then either TPerR(P )M = Ei ⊕ Fi is a dominated splitting or there is a perturbation A of the

derivative of f throughout the orbit of some Q ∈ PerR(P ) such that MA(Q) has a non-real eigenvalue
of rank (i, i + 1) (i.e., ordering increasingly in modulus the eigenvalues of MA(Q), |λ1| ≤ |λ2| · · · ≤
|λn|, one has that λi and λi+1 are conjugate and non-real).

This implies that if for every i the splitting TPerR(P )M = Ei ⊕ Fi is not dominated then, after
a series of perturbations, we obtain a new linear system having non-real eigenvalues of every rank
(i, i+1), i ∈ {1, . . . , n−1}. Using this fact, the existence of the transitions allows us to intermingle
the expansion/contraction in all the directions Ei: by some rotation (associated to a homothety)
one send the Ei direction to the Ei+1 direction (and vice-versa). Thus given any i and k one can
map the Ei direction to the Ek direction. This allows to distribute the expansion/contraction of the
system along all the Ei directions uniformly. This is the key for getting a point whose associated
matrix is a homothety. For details, see [9, Section 5].

In fact, the previous result is a consequence of [9, Proposition 2.1], which states a dichotomy
for (abstract) periodic linear systems with transitions: either the system (Σ, f,A) has a dominated
splitting or there is a perturbation Ã and a point x in the basis Σ such that MÃ(x) is a homothety.
In Section 4.3, we will discuss the proof of this result in the two dimensional case.

The homothety we obtained above corresponds to a linear system which is the perturbation of a
dynamical linear system. A priori, such a homothety has no dynamical meaning. Next key lemma
allows us to interpret dynamically this homothety:

Lemma 4.1 (Franks, [23]). Suppose that Γ is an f−invariant finite set and B is an ε-perturbation
of the derivative of f along the set Γ. Then for every ε > 0 and every neighbourhood U of Γ there
is a diffeomorphism g ε-C1-close to f such that

• f(x) = g(x) for all x ∈ Γ or x 6∈ U ,

• the derivative of Dg(x) = B(x), for all x ∈ Γ.

This lemma allows us to consider perturbations of the derivative of f keeping unchanged the
dynamics of f over a periodic orbit. In this way, after a perturbation, one gets a suitable derivative
along some periodic orbits.
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The interesting dynamical consequence of the previous construction (lack of domination gen-
erates homotheties) and Lemma 4.1 is that if a homoclinic class does not admit any dominated
splitting then one can get a homothety after a perturbation of the derivative along some orbit of
the class. The key result is now the following:

Lemma 4.2 (Scattering Property, Lemmas 1.9 and 1.10 in [9]). Consider a homoclinic
class H(P, f). Fix ε > ε0 > 0 and assume that there are x ∈ Σ and an ε0 perturbation Ã of the
derivative of Dfπ(x)(x) such that MÃ(x) is either a dilatation (i.e. all its eigenvalues have modulus
bigger than 1) or a contraction (i.e. all its eigenvalues have modulus less than 1).

Then there are a point y ∈ ΣP and an ε-C1-perturbation g of f such that y is a sink (resp.
source) of g.

4.2 Non-dominated homoclinic classes and the coexistence phenomenon

As in the results in Section 2.2, the key step is to see that if the homoclinic class H(P, f) does not
admit a dominated splitting then there is a diffeomorphism g arbitrarily C 1-close to f with a sink
or a source arbitrarily close to the homoclinic class H(Pg, g), see [9, Theorem 1]. Assuming that
the homoclinic class of P is persistently non-dominated, one gets a condition similar to the one
of robust tangencies in the Newhouse’s coexistence phenomenon. The genericity argument in this
case follows similarly.

More precisely, consider an open set U such that the map f 7→ Pf which associates to a
diffeomorphism f ∈ U a saddle Pf of f is continuous. Let D be the set of diffeomorphisms g ∈ U
such that H(Pg, g) has some dominated splitting. Denote by C the closure of the interior of D. We
now consider the set H defined as the interior of C. Let S be the complement of C. The union of the
sets H and S is dense in U . Clearly, the diffeomorphisms g such that the homoclinic class of Pg has
a dominated splitting form a dense and open subset of H. We claim that there is a residual subset
of the open set S of diffeomorphisms having infinitely many sinks/sources. By Lemma 4.2, given
any g in S there is h arbitrarily close having at least one sink/source (this is an open property).
Thus the subset S1 of S of diffeomorphisms having at least one sink/source is open and dense in
S. It is now enough to define inductively the sets Sk (which are open and dense in S) and consider
the residual subset S∞ = ∩Si of S.

4.3 Two-dimensional linear systems

We now explain why the absence of domination generates (after a perturbation) non-real eigen-
values. We see this property in the simplest two dimensional case (in some sense, all arguments
involved in the general case have a two dimensional flavor). In what follows, (Σ, f, A) is a periodic
linear system, where A(x) ∈ GL+(2, R) for every x ∈ Σ. There are two reasons for an invariant
splitting E⊕F fails of being dominated. First, the angle between its bundles may not be uniformly
lower bounded. In this case, the following lemma (whose proof is straightforward) gives the non-real
eigenvalues:

Lemma 4.3 (Lemma 3.2 in [9]). For every α > 0 and every matrix M ∈ GL+(2, R) with two
different eigenspaces E1 and E2 whose angle is less than α there is s ∈ [−1, 1] such that Rsα ◦ M
has a pair of non-real eigenvalues (here Rt α denotes the rotation of angle t α).
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The second reason concerns the expansion in the E and F directions. Assume that the angle
between these bundles is uniformly bounded from below. Thus, after a bounded change of the
metric, we can assume that these bundles are orthogonal. That is, E = R× {0} and F = {0} ×R.
Thus the system consists of diagonal matrices. Given x in the basis Σ, denote by σ(x) and λ(x)
the eigenvalues of M[A](x) associated to the vertical direction {0} ×R and the horizontal direction
R × {0}, respectively. Assume for simplicity that, for any x ∈ Σ, |σ(x)| ≥ |λ(x)|.

Lemma 4.4 (Lemma 3.4 in [9]). For any ε > 0 and α > 0, there is ` ∈ N with the following
property. Suppose that the splitting R

2 = R ⊕ R is not `-dominated. Then there are an ε−pertur-
bation Ã of the matrices A and a point x of the basis such that the angle between the eigenspaces
of MÃ(x) is less than α.

Applying now Lemma 4.3, we get the announced non-real eigenvalues.
The proof of Lemma 4.4 goes as follows. Write

Iµ =

(

1 µ
0 1

)

.

Remark 4.5 (Lemma 3.3 in [9]). For every α > 0 and µ > 0, there is c > 1 such that for every
pair of matrices

B =

(

b1 0
0 b2

)

and C =

(

c1 0
0 c2

)

with
|b1|

|b2|
> c and

|b1 c1|

|b2 c2|
< 1,

the angle between the eigenvectors of D = B ◦ Iµ ◦ C is less than α,

The heuristic idea of the proof of this remark is the following. Note that (1, 0) is an eigenvector
of D. Consider the vector (1, β), for some small 0 < β ≤ 2/(c µ) fixed. As |b1/b2| and |c2/c1|
are large (i.e., greater than c), the vectors B−1(1, β) and C(1, β) are almost vertical (angle with
the vertical less than µ). The matrix Iµ now sends the direction of C(1, β) into the direction of
B−1(1, β). Thus (1, β) is an eigenvector of D.

To prove Lemma 4.4 write

A(x) =

(

a(x) 0
0 b(x)

)

.

Suppose first that there is x in Σ such that there is no domination in the period:

|σ(x)| ≤ (1 + µ)2 π(x) |λ(x)|, where π(x) is the period of x.

Multiplying the matrices A(f i(x)) by matrices of the form

(

1 + ν 0
0 1

1+ν

)

, for some ν ∈ [0, µ],

one gets a perturbation B of A such that MB(x) is a homothety. Thus given any pair of (different)
directions of R

2, there is a perturbation C of B such that the eigenvectors of MC(x) are parallel
to such directions. This ends the proof of the lemma in this case.

Thus we can now assume that there is domination in the period:

|σ(x)| > (1 + µ)2 π(x) |λ(x)|, for every x ∈ Σ.
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Consider the constant c in Remark 4.5 (associated to α, µ, and `) such that (1 + µ)` > 2 c.
Since the splitting given by the coordinate directions is not `-dominated, there is x such that

2 |
`−1
∏

0

a(f i(x))| ≥ |
`−1
∏

0

b(f i(x))|.

Assume first that ` < π(x). Consider the perturbation Ã of A given by

Ã(y) =

(

ã(y) 0
0 b(y)

)

, where
ã(y) = (1 + µ) a(y), if y = f i(x), i ∈ {0, · · · , ` − 1},
ã(y) = a(y), if i ∈ {`, . . . , π(x) − 1}.

Let

B =

`−1
∏

0

Ã(f i(x)) and C =

π(x)−1
∏

`

Ã(f i(x)).

Then we have
MÃ(x) = C ◦ B and MÃ(f `(x)) = B ◦ C.

Observe that B and C verify the hypotheses in Remark 4.5. Thus the angle between the eigenvectors
of D = B ◦ Iµ ◦ C is less than α. This gives the announced perturbation.

It remains to consider the case ` ≥ π(x). Since ` cannot be a multiple of π(x) one has ` =
k π(x) + l0, for some k ≥ 1 and 1 ≤ `0 < π(x). By hypothesis (domination in the period),

(1 + µ)2 π(x) |λ(x)| = (1 + µ)2 π(x) |

π(x)−1
∏

0

a(f i(x))| < |

π(x)−1
∏

0

b(f i(x))| = |σ(x)|.

Moreover, since the splitting is not `-dominated, we also have

2 |
`−1
∏

0

a(f i(x))| ≥ |
`−1
∏

0

b(f i(x))|.

Thus

|
`0−1
∏

0

a(f i(x))| >
(1 + µ)2 k π(x)

2
|
`0−1
∏

0

b(f i(x))|.

Finally, note that 2 k π(x) > ` and recall that (1 + µ)` > 2 c, thus

(1 + µ)2 k π(x)

2
>

(1 + µ)l

2
> c.

This implies that, as in the previous case, we can apply Remark 4.5 to

B =

`0−1
∏

0

Ã(f i(x)) and C =

π(x)
∏

`0

Ã(f i(x)).

This gives a perturbation such that the angles of the eigenspaces is less than α. The proof now
follows from Lemma 4.3.
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5 Strong forms of the coexistence phenomenon

In this section, we consider non-dominated dynamical configurations (as the ones in Section 4),
under some extra mild hypotheses, we will derive some new coexistence features from it.

Suppose that U is an open set of C1-diffeomorphisms such that there is a continuous map
P : U → M which associates to each f a saddle P(f) = Pf whose homoclinic class does not admit
any dominated splitting. Theorem 5 implies that there is a residual subset RU of U consisting
of diffeomorphisms having infinitely many sinks or sources. In fact, if the Jacobian of Df π(Pf )Pf

is bigger than one (for every f ∈ U) then the set RU can be taken consisting of diffeomorphisms
with infinitely many sources. Note that if, simultaneously, there is some saddle Qf homoclinically
related to Pf (for all f ∈ U) such that the Jacobian of Df π(Qf )Qf is less than one (for all f ∈ U)
then there is there a residual subset SU of U of diffeomorphisms with infinitely many sinks. Thus
the diffeomorphisms in the residual subset KU = SU ∩RU of U have simultaneously infinitely many
sinks and infinitely many sources. In fact, in this case the set KU can be taken satisfying a much
stronger form of the coexistence phenomenon we proceed to describe.

We say that a homoclinic class H(Pf , f) is wild if there is a C1-neighbourhood U of f such that,
for every g in U , the continuation Pg of Pf is defined and its homoclinic class H(Pg, g) satisfies the
following two conditions:

W1) it contains a pair of saddles homoclinically related to Pg whose Jacobians are greater and
less than one;

W2) it does not admit any dominated splitting.

Theorem 6 (Strong forms of the coexistence phenomenon, [8]). Let W be an open set of
(three dimensional) C1-diffeomorphisms f having a wild homoclinic class H(Pf , f). Then there is
a residual subset R of W such that, for every g ∈ R, the set H(Pg, g) is simultaneously contained
in the closure of infinitely many pairwise disjoint:

• saturated transitive sets with minimal dynamics,

• non-trivial uniformly hyperbolic attractors and repellers,

• non-trivial partially hyperbolic attractors and repellers,

• wild homoclinic classes,

• infinitely many sinks and sources.

Let us recall that an (infinite) f -invariant closed set Λ is minimal if every orbit of it is dense
in the whole Λ (in particular, Λ does not contain periodic points). We say that a transitive set Υ
is saturated if it contains any transitive set intersecting it (thus these sets are maximal transitive,
for the discussion of these notions see [11, Chapter 10]).

The proof of Theorem 6 follows using some of the arguments in Section 4. In the proof of
Theorem 5, if there is some saddle in the non-dominated homoclinic class H(Pf , f) (homoclinically
related to Pf ) whose Jacobian is less than one then the homothety can be chosen contracting. Thus
under the hypotheses of Theorem 6, we can obtain simultaneously a contracting and an expanding
homothety. Moreover, the existence of transitions allows us to intermingle the actions of these
homotheties. In this way, we obtain a perturbation of the derivative at some saddle of the class
which is exactly the identity. This property leads to the following dynamical property:
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Theorem 7 (Universal Dynamics, [8]). C1-generic diffeomorphisms f with a wild homoclinic
class satisfy the following universal property: for every open set O of diffeomorphisms of the disk
D

3, there are infinitely many disjoint periodic disks on which the first return map of f is conjugate
to some element of O.

A consequence of the universal dynamics property is the following principle, see [8]:

Every robust property of C1-diffeomorphisms of the disk D3 is displayed infinitely many times in
periodic disks of disjoint orbits for these locally generic diffeomorphisms having a wild homoclinic
class. In particular, they exhibit simultaneously infinitely many pairwise disjoint non-trivial homo-
clinic classes, infinitely many non-trivial hyperbolic and non-hyperbolic attractors, and infinitely
many non-trivial repellors.

Denote by W(M) the set of diffeomorphisms of Diff1(M) having a wild homoclinic class. Then
the set U(M) of diffeomorphisms with universal dynamics is residual in this set, [8, Theorem B].
Now to get the minimal sets in Theorem 6 one proceeds as follows. Given f ∈ U(M), there are
natural numbers nk, nk → ∞, and of nested disks Dk such that

• the disks Dk, f(Dk), . . . , f
nk−1(Dk) are pairwise disjoint,

• the diameters of the disks f i(Dk), i = 1, . . . , nk, go to zero as k → ∞,

• fnk(Dk) is contained in the interior of Dk.

This construction gives an infinitely renormalizable invariant set

Φ(f) =
⋂

k

∆k, where ∆k =

nk−1
⋃

i=0

f i(Dk).

By construction, the Cantor set Φ(f) is minimal and maximal transitive. This construction is
depicted in the Figure 10.

PSfrag replacements
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D2

D2

D3

Figure 10: Infinitely renormalizable minimal sets

In the next section, we construct diffeomorphisms with robustly non-dominated homoclinic
classes, obtaining in this way C1-open sets of diffeomorphisms where the coexistence phenomenon
occurs.
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6 Generation of non-dominated homoclinic classes: heterodimen-

sional tangencies

In view of the results in Section 4 and 5, a key problem is to construct an open set of diffeomorphisms
U having a saddle Pf (depending continuously on the dynamics) whose homoclinic class does
not admit any dominated splitting (this problem is open for C 1-surface diffeomorphisms). In
Section 3, we introduced a dynamical configuration with robustly non-dominated homoclinic classes.
In this section, we describe a much more natural method for obtaining non-dominated dynamics:
heterodimensional tangencies.

The dynamical configuration of heterodimensional tangencies is reminiscent of the one of ho-
moclinic tangencies. Instead of bifurcations of hyperbolic homoclinic classes as in Section 2.2, we
consider partially hyperbolic ones. Typically, these non-hyperbolic classes contain saddles of in-
dices one and two. We analyze what happens at heterodimensional tangencies relating saddles with
different indices. This bifurcation provides a transition from partially hyperbolic homoclinic classes
to robustly non-dominated homoclinic classes.

We consider three dimensional diffeomorphisms f with two saddles of Pf and Qf such that
index(Pf ) = 1, index(Qf ) = 2, and Pf ∈ H(Qf , f). We say that f has a heterodimensional tangency
associated to Pf and Qf if W s(Pf , f) and W u(Qf , f) have some non-transverse intersection at some
point yf . Note that dim(W s(Pf , f)) + dim(W u(Qf , f)) = 4. We assume that the non-transverse
intersection is parabolic: there are compact two-disks K s

f ⊂ W s(Pf , f) and Ku
f ⊂ W u(Qf , f)

containing yf in their interiors and local coordinates around yf = (0, 0, 0) such that, in these
coordinates,

Ks
f = {z = 0} and Ku

f = {z = x2 + y2}.

For g close to f , we consider continuations K s
g ⊂ W s(Pg, g) and Ku

g ⊂ W u(Qg, g) of Ks
f and Ku

f .
Clearly, there are diffeomorphisms g arbitrarily close to f such that σg = Ks

g ∩ Ku
g is a transverse

intersection diffeomorphic to a circle.
We need a result about homoclinic classes of C1-generic diffeomorphisms:

Proposition 6.1 (Lemma 2.1 in [2] following [4, 13]). Consider a diffeomorphism f and
any pair of (hyperbolic) saddles Pf and Qf of f of different indices. Then there are a C1-open
neighbourhood Uf of f and a residual subset RUf

of Uf with the following property:

• either H(Pg, g) = H(Qg, g), for all g ∈ RUf
;

• or H(Pg, g) ∩ H(Qg, g) = ∅, for all g ∈ RUf
.

In the first case, we say that the saddles Pf and Qf are persistently linked (in Uf ).

This proposition, in particular, implies that the open set C in Section 3 contains a residual
subset R such that H(Pf , f) = H(Qf , f), for all f ∈ R.

Theorem 8 ([16]). Let LP,Q(M) be an open set of Diff1(M) such that, for every f ∈ LP,Q(M),
there are saddles Pf and Qf (depending continuously on f) of indices one and two which are per-
sistently linked in LP,Q(M). Assume that there is h ∈ LP,Q(M) with a heterodimensional tangency
associated to Ph and Qh. Then there is a C1-open set V such that its closure contains h and the
homoclinic class H(Qg, g) does not admit any dominated splitting for every g ∈ V.
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The main step of the proof of this proposition is to check that, if g ∈ V, the small circles
σg = Ks

g ∩ Ku
g of the transverse intersection of W s(Pg, g) and W u(Qg, g) are contained in the

homoclinic class of Qg. We will explain this property in the example in Section 6.1
The first step is to see that one can assume that the heterodimensional tangency is associated

to saddles whose multipliers are all real and positive and have multiplicity one (this follows from
the results in Section 4: generically, the sets PerR(Pg) and PerR(Qg) are dense in the homoclinic
classes of Pg and Qg).

Consider now g such that σg is contained in the homoclinic class H(Qg, g) and assume, by
contradiction, that the class has a dominated splitting E⊕F . Suppose, for instance, that dim(E) =
1. For each x ∈ H(Qg, g), consider the fibers Ex and Fx and the angle α(x) between Ex and Fx.
The domination of E⊕F implies that α(x) > α0, for all x ∈ H(Qg, g). Assume, for simplicity, that
gk(σg) → Pg and g−k(σg) → Qg as k → ∞. Since H(Qg, g) is closed and g-invariant, one has that
Pg ∈ H(Qg, g).

Consider Σg = ∪kg
k(σ) and the g-invariant family of bundles H = {H(x)}x∈Σg , Hx = TxΣg.

The domination of E ⊕ F and the invariance of the family H imply that either Hx ⊂ Ex for all
x ∈ Σg, or Hx ⊂ Fx for all x ∈ Σg.

Since the curves gk(σ) are arbitrarily small circles close to Pg (in a small local stable manifold
of P ), for each big k there are points z, w ∈ gk(σg) such that: (a) Hz is parallel to Ess

P = EP and
(b) Hw is parallel to Ec

P , where Ec
P is the center-stable space of P . See Figure 11. Note that, since

dim(E) = 1, we have Ec
P ⊂ FP .PSfrag replacements
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Figure 11: The splitting cannot be dominated

First, if Hx ⊂ Ex for all x ∈ Σg (thus Hx = Ex) then (b) above a contradiction: there is w
close to P such that EP = Ess

P and Ew = Hw are not close. Finally, if Hx ⊂ Fx then (a) gives
a contradiction: there is z close to P such that the angle between Fz and Ez is close to zero,
contradicting that α(z) > α0 > 0.

6.1 Examples of diffeomorphisms with heterodimensional tangencies

In this section, we construct diffeomorphisms with heterodimensional tangencies obtained as bifur-
cations of partially hyperbolic sets. Our construction is motivated (and it is also similar) to the
one in [35, page 89-90] for diffeomorphisms with homoclinic tangencies (see also the constructions
in Section 2.2). Let us recall the main steps of the construction in [35].

Consider a diffeomorphism f having a Plykin attractor Σ in a disk D of R
2. Take a fixed saddle

P of f in Σ and note that attractor Σ is the homoclinic class of P . Multiply now f by a linear
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expansion g(x) = λx on the line R. We take large λ in such a way D ×{0} is normally hyperbolic
(any expansion of the derivative of g in the disk D is strictly upper bounded by λ). Note that
the point S = (P, 0) is a saddle of index two of the product diffeomorphism φ = (f, g) and that
Λ = Σ × {0} ⊂ D × {0} is a hyperbolic transitive set of φ.

We pick points Z1 in the strong unstable manifold of S (tangent to {0, 0} × R) and Z2 in the
stable manifold of S and perform a semi-local perturbation of φ preserving the hyperbolic set Λ: we
consider an arc (φt)t∈[0,1], with φ0 = φ, such that for every t ∈ [0, 1) the set Λ is a hyperbolic set of
φt and, for t = 1, φ1 has a homoclinic tangency associated to S at the point A2. The perturbation
is depicted in Figure 12. A key condition here is that Λ does not contain points in the region z > 0.PSfrag replacements
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Figure 12: Creation of a homoclinic tangency

We now sketch our construction of diffeomorphisms with a heterodimensional tangency. For
clearness, we use coordinates in R

3, but our construction holds for much more general diffeo-
morphisms. We consider a diffeomorphism f with a heterodimensional cycle related to saddles
Q = (0, 0, 0) and P = (0, 4, 0), of indices 2 and 1, such that dynamics around the cycle is the
following. In the cube R = [−1, 1] × [−1, 5] × [−1, 1],

f(x, y, z) = (λs x, F (y), λu z), 0 < λs < 1 < λu,

where F is a strictly increasing function such that F ′(0) = β > 1 > F ′(4) = λ > 0, and λs <
F ′(x) < λu, for all x ∈ [−1, 5]. Note that he restriction of f to the cube R has a partially hyperbolic
splitting Es⊕Ec⊕Eu with three non-trivial bundles (given by the coordinate directions). Moreover
the stable manifold W s(P ) of P and the unstable manifold W u(Q) of Q meet transversely along
the normally hyperbolic curve {0} × (0, 4) × {0}.

We fix the points A = (0, 4,− 1
2 ) ∈ W u(P ) and B = (− 1

2 , 0, 0) ∈ W s(Q) and assume that there
is k0 ∈ N with fk0(A) = B and f j(A) /∈ R for all 0 < j < k0. Hence W u(P ) ∩ W s(Q) 6= ∅.
Thus f has a heterodimensional cycle associated to the saddles P and Q of indices one and two,
respectively. We also assume that W u(P ) and W s(Q) meet quasi-transversely throughout the orbit
of the heteroclinic point B:

TBW u(P ) + TBW s(Q) = TBW u(P ) ⊕ TBW s(Q) = XZ.

This heterodimensional cycle is depicted in Figure 13. We can perform this construction in such
a way that the resulting diffeomorphism (and the arcs unfolding the associated cycle) satisfies
Theorem 4.

We take small neighbourhoods V of the heteroclinic curve {0} × [0, 4] × {0} and UA of A such
that V is contained in R, UA, . . . , fk0(UA) are pairwise disjoint, f−1(UA) ⊂ V , fk0+1(UA) ⊂ V ,
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Figure 13: A heterodimensional tangency

and f j(UA) ∩ R = ∅, for all 0 < j < k0. We select the neighbourhood of the cycle

W = V ∪ UA ∪ f(UA) ∪ · · · ∪ fk0(UA).

Given g close to f , let Λg = ∩i∈Zgi(W ) be the maximal invariant set of g in W . By construction,
the set Λg is partially hyperbolic. We also can take g such that there are transverse homoclinic
points of P and Q close to A and B (i.e., this follows by unfolding the heterodimensional cycle).
Moreover, this is much more relevant, the diffeomorphism g can be taken such the set Λg is a
transitive set and equal to the homoclinic class of Q, recall Theorem 4 and the discussion in
Section 3. In particular, this set contains the (continuation) of heteroclinic segment {0}×[0, 4]×{0}.
Thus P ∈ Λg. In fact, the set Λg is a prototype of robustly transitive set. Thus the set Λg = H(Q, g)
verifies the hypotheses of Theorem 8.

We now take h close to g such that Λh = H(Q,h) is robustly transitive. We can now use the
arguments above to get a heterodimensional tangency associated to P and Q. A key point here is
that the set Λh does not intersect the regions z > 0 and x < 0. We now exactly repeat the arguments
above taking, for instance, Z1 = (0, 0, 1/2) ∈ W u(Q,h) and Z2 = (−1/2, 1/2, 0) ∈ W s(P, h). As
above, there is an arc (ht)t∈[0,1], with h0 = h, such that for every t ∈ [0, 1) the set Λht

= H(Q,ht)
is robustly transitive (we do not modify the dynamics around the cycle) and for t = 1, h1 has a
heterodimensional tangency associated to Q and P at the point Z2. See Figure 13. This ends our
construction.

We finally explain how the unfolding of the heterodimensional tangency generates C 1-robustly
non-dominated homoclinic classes. The proof of the transitivity of Λg involves the distinctive prop-
erty of the heterodimensional cycles in Section 3: consider any 2-disk ∆ intersecting transversely
the two-dimensional stable manifold of P along a curve, then the one-dimensional stable manifold
of Q transversely intersects ∆. This implies that the curve {0} × [0, 4] × {0} is contained in the
homoclinic class of Q: given any point Z ∈ {0} × [0, 4] × {0} there is an arbitrarily small two-disk
∆(Z) contained in the unstable manifold of Q and whose interior contains Z. Then, by the dis-
tinctive property, this disk transversely meets W s(Q), thus it contains a point of the homoclinic
class of Q. Since the disk ∆(Z) can be chosen arbitrarily small and a homoclinic class is closed,
we have Z ∈ H(Q, g) for all Z ∈ {0} × [0, 4] × {0}.

Unfolding the heterodimensional tangency of h1, we obtain diffeomorphisms ϕ such that the
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transverse intersection between W s(P,ϕ) and W u(Q,ϕ) contains small circles σ. Repeating the
argument before (i.e., applying the distinctive property) for points Z ∈ σ, we have that the circle
σ is contained in the homoclinic class H(Q,ϕ). This implies that the saddle P (resp. Q) is
accumulated by arbitrarily small circles contained in the homoclinic class of Q. These circles are
also contained in the intersection of the stable manifold of P and the unstable manifold of Q. As
we showed above, these circles prevent the existence of a dominated splitting over the homoclinic
class of Q.

Noting that previous arguments hold for diffeomorphisms ϕ close to h1 such that the intersection
between W s(P,ϕ) and W u(Q,ϕ) contains small circles, we get an open set U of diffeomorphism
having a non-dominated homoclinic class.
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