“non-hyperbolicities”

Lorenzo J. Díaz

PUC-Rio

III CLAM, Santiago, September 2009
goals, questions

How to characterize the absence of (uniform) hyperbolicity?

What structures cannot exist in the hyperbolic case but must be present in its complement?

general facts

Many nonhyperbolic systems exhibit “some (weak) hyperbolicity.”

non-uniform, partial, singular, dominated splittings....

A little hyperbolicity goes a long way (Pugh-Shub).
goals, questions

How to characterize the absence of (uniform) hyperbolicity?

What structures cannot exist in the hyperbolic case but must be present in its complement?

general facts

Many nonhyperbolic systems exhibit “some (weak) hiperbolicity.”

non-uniform, partial, singular, dominated splittings....

A little hyperbolicity goes a long way (Pugh-Shub).
goals, questions
How to characterize the absence of (uniform) hyperbolicity?
What structures cannot exist in the hyperbolic case but must be present in its complement?

general facts
Many nonhyperbolic systems exhibit "some (weak) hiperbolicity."
non-uniform, partial, singular, dominated splittings....
A little hyperbolicity goes a long way (Pugh-Shub).
goals, questions
How to characterize the absence of (uniform) hyperbolicity?
What structures cannot exist in the hyperbolic case but must be present in its complement?

general facts
Many nonhyperbolic systems exhibit “some (weak) hiperbolicity.”
non-uniform, partial, singular, dominated splittings....
A little hyperbolicity goes a long way (Pugh-Shub).
beyond hyperbolicity

goals, questions

How to characterize the absence of (uniform) hyperbolicity?
What structures cannot exist in the hyperbolic case but must be present in its complement?

general facts

Many nonhyperbolic systems exhibit “some (weak) hiperbolicity.”
non-uniform, partial, singular, dominated splittings....
A little hyperbolicity goes a long way (Pugh-Shub).
Palis conjecture

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies (dim ≥ 2),
- heterodimensional cycles (dim ≥ 3).
Palis conjecture

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies (dim ≥ 2),
- heterodimensional cycles (dim ≥ 3).
Palis conjecture

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies \((\dim \geq 2)\),
- heterodimensional cycles \((\dim \geq 3)\).
Palis conjecture

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies (dim ≥ 2),
- heterodimensional cycles (dim ≥ 3).
Palis conjecture

Dichotomy: hyperbolicity versus cycles

cycles:

- homoclinic tangencies (dim ≥ 2),
- heterodimensional cycles (dim ≥ 3).
some results

the conjecture holds for

- circle maps (Peixoto),
- C^1 surface diffeomorphisms (Pujals-Sambarino)
- C^1 tame diffeomorphisms $n \geq 3$ (Bonatti-D.).

tame diffeomorphisms

Those having stably finitely many homoclinic classes.

tame diffeomorphisms, $n \geq 3$

dichotomy: hyperbolicity versus robust heterodimensional cycles.
some results

the conjecture holds for

- circle maps (Peixoto),
- C^1 surface diffeomorphisms (Pujals-Sambarino)
- C^1 tame diffeomorphisms $n \geq 3$ (Bonatti-D.).

tame diffeomorphisms

Those having stably finitely many homoclinic classes.

tame diffeomorphisms, $n \geq 3$

dichotomy: hyperbolicity versus robust heterodimensional cycles.
some results

the conjecture holds for

- circle maps (Peixoto),
- C^1 surface diffeomorphisms (Pujals-Sambarino)
- C^1 tame diffeomorphisms $n \geq 3$ (Bonatti-D.).

tame diffeomorphisms

Those having stably finitely many homoclinic classes.

tame diffeomorphisms, $n \geq 3$

dichotomy: hyperbolicity versus robust heterodimensional cycles.
some results
the conjecture holds for
- circle maps (Peixoto),
- C^1 surface diffeomorphisms (Pujals-Sambarino)
- C^1 tame diffeomorphisms $n \geq 3$ (Bonatti-D.).

Those having stably finitely many homoclinic classes.

dichotomy: hyperbolicity versus robust heterodimensional cycles.
some results

the conjecture holds for

- circle maps (Peixoto),
- C^1 surface diffeomorphisms (Pujals-Sambarino)
- C^1 tame diffeomorphisms $n \geq 3$ (Bonatti-D.).

tame diffeomorphisms

Those having stably finitely many homoclinic classes.

tame diffeomorphisms, $n \geq 3$

dichotomy: hyperbolicity versus robust heterodimensional cycles.
Beyond hyperbolicity, non-hyperbolic features, C^1-generic setting, weak hyperbolicities, and non-hyperbolic features.

Some Results

The conjecture holds for:
- Circle maps (Peixoto),
- C^1 surface diffeomorphisms (Pujals-Sambarino),
- C^1 tame diffeomorphisms $n \geq 3$ (Bonatti-D.).

Tame Diffeomorphisms

Those having stably finitely many homoclinic classes.

Tame Diffeomorphisms, $n \geq 3$

Dichotomy: hyperbolicity versus robust heterodimensional cycles.
Heterodimensional cycles associated to hyperbolic sets

Λ and Σ hyperbolic basic sets, different indices

\[W^s(\Lambda) \cap W^u(\Sigma) \neq \emptyset \quad \text{and} \quad W^u(\Lambda) \cap W^s(\Sigma) \neq \emptyset. \]

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)

every \(g \) close to \(f \) has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

thus: robust cycles involve some non-trivial hyperbolic set.
Heterodimensional cycles associated to hyperbolic sets

Λ and Σ hyperbolic basic sets, different indices

\[W^s(\Lambda) \cap W^u(\Sigma) \neq \emptyset \quad W^u(\Lambda) \cap W^s(\Sigma) \neq \emptyset. \]

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)

every \(g \) close to \(f \) has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

thus: robust cycles involve some non-trivial hyperbolic set.
Heterodimensional cycles associated to hyperbolic sets

Λ and Σ hyperbolic basic sets, different indices

\[W^s(\Lambda) \cap W^u(\Sigma) \neq \emptyset \quad \text{and} \quad W^u(\Lambda) \cap W^s(\Sigma) \neq \emptyset. \]

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)
every \(g \) close to \(f \) has a cycle.

Kupka-Smale Theorem
generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

thus: robust cycles involve some non-trivial hyperbolic set.
Heterodimensional cycles associated to hyperbolic sets

\(\Lambda \) and \(\Sigma \) hyperbolic basic sets, different indices

\[W^s(\Lambda) \cap W^u(\Sigma) \neq \emptyset \quad W^u(\Lambda) \cap W^s(\Sigma) \neq \emptyset. \]

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)
every \(g \) close to \(f \) has a cycle.

Kupka-Smale Theorem
generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

thus: robust cycles involve some non-trivial hyperbolic set.
Heterodimensional cycles associated to hyperbolic sets

Λ and Σ hyperbolic basic sets, different indices

\[\mathcal{W}^s(\Lambda) \cap \mathcal{W}^u(\Sigma) \neq \emptyset \quad \mathcal{W}^u(\Lambda) \cap \mathcal{W}^s(\Sigma) \neq \emptyset. \]

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)
every \(g \) close to \(f \) has a cycle.

Kupka-Smale Theorem
genERICALLY, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

thus: robust cycles involve some non-trivial hyperbolic set.
Heterodimensional cycles associated to hyperbolic sets

\(\Lambda \) and \(\Sigma \) hyperbolic basic sets, different indices

\[W^s(\Lambda) \cap W^u(\Sigma) \neq \emptyset \quad W^u(\Lambda) \cap W^s(\Sigma) \neq \emptyset. \]

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)

every \(g \) close to \(f \) has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

thus: robust cycles involve some non-trivial hyperbolic set.
Heterodimensional cycles associated to hyperbolic sets

\(\Lambda \) and \(\Sigma \) hyperbolic basic sets, different indices

\[
W^s(\Lambda) \cap W^u(\Sigma) \neq \emptyset \quad W^u(\Lambda) \cap W^s(\Sigma) \neq \emptyset.
\]

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)
every \(g \) close to \(f \) has a cycle.

Kupka-Smale Theorem
generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

thus: robust cycles involve some non-trivial hyperbolic set.
Heterodimensional cycles associated to hyperbolic sets

\(\Lambda \) and \(\Sigma \) hyperbolic basic sets, different indices

\[W^s(\Lambda) \cap W^u(\Sigma) \neq \emptyset \quad W^u(\Lambda) \cap W^s(\Sigma) \neq \emptyset. \]

similarly for homoclinic tangencies.

robust cycles (heterodim. cycles and tangencies)

every \(g \) close to \(f \) has a cycle.

Kupka-Smale Theorem

generically, periodic points are hyperbolic and their invariant manifolds are in general position (transversality).

thus: robust cycles involve some non-trivial hyperbolic set.
non-hyperbolic features

some non-hyperbolic features
- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

question
Which dynamical features are typical of each form of weak hyperbolicity?
non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

question

Which dynamical features are typical of each form of weak hyperbolicity?
non-hyperbolic features

Some non-hyperbolic features:
- Bifurcations of periodic orbits (saddle-node, flip, Hopf),
- Absence of shadowing properties,
- Cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- Non-hyperbolic ergodic measures with large support,
- Non-existence of symbolic extensions.

Question:
Which dynamical features are typical of each form of weak hyperbolicity?
non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

question

Which dynamical features are typical of each form of weak hyperbolicity?
non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

question

Which dynamical features are typical of each form of weak hyperbolicity?
non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

question

Which dynamical features are typical of each form of weak hyperbolicity?
non-hyperbolic features

some non-hyperbolic features

- bifurcations of periodic orbits (saddle-node, flip, Hopf),
- absence of shadowing properties,
- cycles,
- Newhouse-like phenomena: super-exponential growth of the number of periodic points,
- non-hyperbolic ergodic measures with large support,
- non-existence of symbolic extensions.

question

Which dynamical features are typical of each form of weak hyperbolicity?
non-hyperbolic ergodic measures

diffeo $f : M \to M$, $\dim M = n$,

μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ-measure,

$\chi_\mu^1 \leq \chi_\mu^2 \leq \cdots \leq \chi_\mu^n$

for all $x \in \Lambda$ and all $v \in T_x M$, $v \neq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log ||Df^n(v)|| = \chi_\mu^i,$$

some $i = 1, \ldots, n$.

χ_μ^i is the i-th Lyapunov exponent of μ.

μ is non-hyperbolic if $\chi_\mu^i = 0$ for some i.
non-hyperbolic ergodic measures

diffeo $f : M \rightarrow M$, $\dim M = n$,

μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ-measure,

$\chi^1_\mu \leq \chi^2_\mu \leq \cdots \leq \chi^n_\mu$

for all $x \in \Lambda$ and all $v \in T_xM$, $v \neq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log \|Df^n(v)\| = \chi^i_\mu,$$

some $i = 1, \ldots, n$.

χ^i_μ is the i-th Lyapunov exponent of μ.

μ is non-hyperbolic if $\chi^i_\mu = 0$ for some i.
non-hyperbolic ergodic measures

diffeo $f : M \to M$, $\dim M = n$,

μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ-measure,

$\chi_1^\mu \leq \chi_2^\mu \leq \cdots \leq \chi_n^\mu$

for all $x \in \Lambda$ and all $v \in T_x M$, $v \neq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log ||Df^n(v)|| = \chi_i^\mu, \text{ some } i = 1, \ldots, n.$$

χ_i^μ is the i-th Lyapunov exponent of μ.

μ is non-hyperbolic if $\chi_i^\mu = 0$ for some i.
non-hyperbolic ergodic measures

diffeo $f : M \rightarrow M$, $\dim M = n$,

μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ-measure,

$\chi_{\mu}^1 \leq \chi_{\mu}^2 \leq \cdots \leq \chi_{\mu}^n$

for all $x \in \Lambda$ and all $v \in T_x M$, $v \neq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log ||Df^n(v)|| = \chi_{\mu}^i,$$ some $i = 1, \ldots, n$.

χ_{μ}^i is the i-th Lyapunov exponent of μ.

μ is non-hyperbolic if $\chi_{\mu}^i = 0$ for some i.
non-hyperbolic ergodic measures

diffeo $f : M \to M$, $\dim M = n$,

μ *ergodic* measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ-measure,

$\chi_\mu^1 \leq \chi_\mu^2 \leq \cdots \leq \chi_\mu^n$

for all $x \in \Lambda$ and all $v \in T_x M$, $v \neq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log ||Df^n(v)|| = \chi_\mu^i,$$

some $i = 1, \ldots, n$.

χ_μ^i is the i-th Lyapunov exponent of μ.

μ is non-hyperbolic if $\chi_\mu^i = 0$ for some i.
diffeo $f : M \to M$, $\dim M = n$,

μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ-measure,

$\chi_\mu^1 \leq \chi_\mu^2 \leq \cdots \leq \chi_\mu^n$

for all $x \in \Lambda$ and all $v \in T_x M$, $v \neq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log \|Df^n(v)\| = \chi_\mu^i, \quad \text{some } i = 1, \ldots, n.$$

χ_μ^i is the i-th Lyapunov exponent of μ.

μ is non-hyperbolic if $\chi_\mu^i = 0$ for some i.

non-hyperbolic ergodic measures
non-hyperbolic ergodic measures

\text{diffeo } f : M \to M, \dim M = n,
\mu \text{ ergodic measure of } f: \mu(f^{-1}(A)) = A \text{ implies } \mu(A) = 0, 1,

there are Λ of full \mu-measure,
\chi_1^\mu \leq \chi_2^\mu \leq \cdots \leq \chi_n^\mu

for all \ x \in Λ \text{ and all } v \in T_xM, v \neq 0,

\lim_{n \to \infty} \frac{1}{n} \log ||Df^n(v)|| = \chi_i^\mu, \ \text{some } i = 1, \ldots, n.

\chi_i^\mu \text{ is the } i\text{-th Lyapunov exponent of } \mu.

\mu \text{ is non-hyperbolic if } \chi_i^\mu = 0 \text{ for some } i.
diffeo $f : M \to M$, $\dim M = n$,

μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ-measure,

$\chi_\mu^1 \leq \chi_\mu^2 \leq \cdots \leq \chi_\mu^n$

for all $x \in \Lambda$ and all $v \in T_xM$, $v \neq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log ||D^n f(v)|| = \chi_\mu^i, \text{ some } i = 1, \ldots, n.$$

χ_μ^i is the i-th Lyapunov exponent of μ.

μ is non-hyperbolic if $\chi_\mu^i = 0$ for some i.

non-hyperbolic ergodic measures
non-hyperbolic ergodic measures

diffeo $f : M \rightarrow M$, $\dim M = n$,

μ ergodic measure of f: $\mu(f^{-1}(A)) = A$ implies $\mu(A) = 0, 1$,

there are Λ of full μ-measure,

$\chi_\mu^1 \leq \chi_\mu^2 \leq \cdots \leq \chi_\mu^n$ for all $x \in \Lambda$ and all $v \in T_x M$, $v \neq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log \|Df^n(v)\| = \chi_\mu^i, \quad \text{some } i = 1, \ldots, n.$$

χ_μ^i is the i-th Lyapunov exponent of μ.

μ is non-hyperbolic if $\chi_\mu^i = 0$ for some i.
f is Artin-Mazur (A-M) if the number $P_n(f)$ of isolated periodic points of period n of f satisfies:

$$P_k(f) \leq \exp(Ck).$$

A-M maps are dense in the space of C^r-maps but no C^r-generic, $r \geq 1$ (Kaloshin).
supergrowth of the number of periodic points

\(f \) is Artin-Mazur (A-M) if the number \(P_n(f) \) of isolated periodic points of period \(n \) of \(f \) satisfies:

\[
P_k(f) \leq \exp(Ck).
\]

A-M maps are dense in the space of \(C^r \)-maps but no \(C^r \)-generic, \(r \geq 1 \) (Kaloshin).
supergrowth of the number of periodic points

\(f \) is Artin-Mazur (A-M) if the number \(P_n(f) \) of isolated periodic points of period \(n \) of \(f \) satisfies:

\[
P_k(f) \leq \exp(Ck).
\]

A-M maps are dense in the space of \(C^r \)-maps but no \(C^r \)-generic, \(r \geq 1 \) (Kaloshin).
super-growth of the number of periodic points

U open set has a super-exponential growth for the number of periodic points if for every arbitrary sequence of positive numbers $a = (a_k)$ there is a residual subset $R(a)$ of U with

$$\limsup \frac{P_k}{a_k} = \infty, \quad \text{if } f \in R(a).$$

super-exponential growth is common in non-hyperbolic dynamics (Kaloshin for C^2-tangencies and Bonatti-D.-Fisher for C^1-non-hyperbolic dynamics).
super-growth of the number of periodic points

U open set has a super-exponential growth for the number of periodic points if for every arbitrary sequence of positive numbers $a = (a_k)$ there is a residual subset $R(a)$ of U with

$$\limsup \frac{P_k}{a_k} = \infty, \quad \text{if } f \in R(a).$$

super-exponential growth is common in non-hyperbolic dynamics (Kaloshin for C^2-tangencies and Bonatti-D.-Fisher for C^1-non-hyperbolic dynamics).
symbolic extensions

\[f : X \rightarrow X, \text{ homeomorphism,} \]

\((X, f)\) has a **symbolic extension** if there exists a subshift (finitely many symbols) \((\Sigma, \sigma)\) and a continuous surjective map \(\pi : \Sigma \rightarrow X\) such that

\[\pi \circ \sigma = f \circ \pi. \]

\((\Sigma, \sigma)\) is called an **extension** of \((X, f)\)

\((X, f)\) is a **factor** of \((\Sigma, \sigma)\).

Remark (!!): super-exponential growth is compatible with the existence of symbolic extensions, periodic orbits may be covered by non-periodic ones.
symbolic extensions

\(f : X \to X \), homeomorphism,

\((X, f)\) has a **symbolic extension** if there exists a subshift (finitely many symbols) \((\Sigma, \sigma)\) and a continuous surjective map \(\pi : \Sigma \to X\) such that

\[\pi \circ \sigma = f \circ \pi. \]

\((\Sigma, \sigma)\) is called an extension of \((X, f)\)

\((X, f)\) is a factor of \((\Sigma, \sigma)\).

remark (!!): super-exponential growth is compatible with the existence of symbolic extensions, periodic orbits may be covered by non-periodic ones.
symbolic extensions

\[f : X \to X, \text{ homeomorphism,} \]

\((X, f)\) has a **symbolic extension** if there exists a subshift (finitely many symbols) \((\Sigma, \sigma)\) and a continuous surjective map \(\pi : \Sigma \to X\) such that

\[\pi \circ \sigma = f \circ \pi. \]

\((\Sigma, \sigma)\) is called an **extension** of \((X, f)\)

\((X, f)\) is a **factor** of \((\Sigma, \sigma)\).

Remark (!!): super-exponential growth is compatible with the existence of symbolic extensions, periodic orbits may be covered by non-periodic ones.
symbolic extensions

\[f : X \to X, \text{ homeomorphism,} \]

\((X, f)\) has a **symbolic extension** if there exists a subshift (finitely many symbols) \((\Sigma, \sigma)\) and a continuous surjective map \(\pi : \Sigma \to X\) such that

\[\pi \circ \sigma = f \circ \pi. \]

\((\Sigma, \sigma)\) is called an **extension** of \((X, f)\)

\((X, f)\) is a **factor** of \((\Sigma, \sigma)\).

remark (!!): super-exponential growth is compatible with the existence of symbolic extensions, periodic orbits may be covered by non-periodic ones.
symbolic extensions

\(f : X \to X \), homeomorphism,

\((X, f)\) has a \textbf{symbolic extension} if there exists a subshift (finitely many symbols) \((\Sigma, \sigma)\) and a continuous surjective map \(\pi : \Sigma \to X\) such that

\[\pi \circ \sigma = f \circ \pi. \]

\((\Sigma, \sigma)\) is called an \textbf{extension} of \((X, f)\)

\((X, f)\) is a \textbf{factor} of \((\Sigma, \sigma)\).

\textbf{remark (!!!)}: super-exponential growth is compatible with the existence of symbolic extensions, periodic orbits may be covered by non-periodic ones.
symbolic extensions

$f : X \to X$, homeomorphism,

(X, f) has a **symbolic extension** if there exists a subshift (finitely many symbols) (Σ, σ) and a continuous surjective map $\pi : \Sigma \to X$ such that

$$\pi \circ \sigma = f \circ \pi.$$

(Σ, σ) is called an **extension** of (X, f)

(X, f) is a **factor** of (Σ, σ).

remark (!!): super-exponential growth is compatible with the existence of symbolic extensions, periodic orbits may be covered by non-periodic ones.
approach and setting

Properties having some persistence,

C^1-diffeomorphisms,

context: C^1-generic dynamics (i.e., study of (locally) residual subsets)

consequences: generically, periodic points are hyperbolic and their invariant manifolds are in general positions (transversality)

thus: local bifurcations of periodic points and cycles associated to saddles can be discarded (?!).
Properties having some persistence, C^1-diffeomorphisms,
context: C^1-generic dynamics (i.e., study of (locally) residual subsets)

consequences: generically, periodic points are hyperbolic and their invariant manifolds are in general positions (transversality)
thus: local bifurcations of periodic points and cycles associated to saddles can be discarded (?!).
approach and setting

Properties having some persistence, C^1-diffeomorphisms, C^1-generic dynamics (i.e., study of (locally) residual subsets)

consequences: generically, periodic points are hyperbolic and their invariant manifolds are in general positions (transversality)

thus: local bifurcations of periodic points and cycles associated to saddles can be discarded (?!).
approach and setting

Properties having some persistence,

\(C^1 \)-diffeomorphisms,

context: \(C^1 \)-generic dynamics (i.e., study of (locally) residual subsets)

consequences: generically, periodic points are hyperbolic and their invariant manifolds are in general positions (transversality)

thus: local bifurcations of periodic points and cycles associated to saddles can be discarded (?)
approach and setting

Properties having some persistence,

C^1-diffeomorphisms,

context: C^1-generic dynamics (i.e., study of (locally) residual subsets)

consequences: generically, periodic points are hyperbolic and their invariant manifolds are in general positions (transversality)

thus: local bifurcations of periodic points and cycles associated to saddles can be discarded (?!).
approach and setting

Properties having some persistence,

C^1-diffeomorphisms,

context: C^1-generic dynamics (i.e., study of (locally) residual subsets)

consequences: generically, periodic points are hyperbolic and their invariant manifolds are in general positions (transversality)

thus: local bifurcations of periodic points and cycles associated to saddles can be discarded (?!).
We are interested in these bifurcations and (mostly) in their dynamical consequences.... typical dynamical features generated.

Reformulation: we replace cycles associated to saddles by cycles associated to hyperbolic sets.

Facts: local bifurcations of periodic points and cycles yield cycles associated to sets, these cycles can be robust.
We are interested in these bifurcations and (mostly) in their dynamical consequences.... typical dynamical features generated.

Reformulation: we replace cycles associated to saddles by cycles associated to hyperbolic sets.

Facts: local bifurcations of periodic points and cycles yield cycles associated to sets, these cycles can be robust.
We are interested in these bifurcations and (mostly) in their dynamical consequences.... typical dynamical features generated.

Reformulation: we replace cycles associated to saddles by cycles associated to hyperbolic sets.

Facts: local bifurcations of periodic points and cycles yield cycles associated to sets, these cycles can be robust.
We are interested in these bifurcations and (mostly) in their dynamical consequences. Typical dynamical features generated.

Reformulation: we replace cycles associated to saddles by cycles associated to hyperbolic sets.

Facts: local bifurcations of periodic points and cycles yield cycles associated to sets, these cycles can be robust.
We are interested in these bifurcations and (mostly) in their dynamical consequences.... typical dynamical features generated.

Reformulation: we replace cycles associated to saddles by cycles associated to hyperbolic sets.

Facts: local bifurcations of periodic points and cycles yield cycles associated to sets, these cycles can be robust.
We are interested in these bifurcations and (mostly) in their dynamical consequences.... typical dynamical features generated.

Reformulation: we replace cycles associated to saddles by cycles associated to hyperbolic sets.

Facts: local bifurcations of periodic points and cycles yield cycles associated to sets, these cycles can be robust.
domination (I)

\(f : M \to M, \) diffeo., \(M \) compact and closed,

\(\Lambda : f \)-invariant \((f(\Lambda) = \Lambda)\) compact set.

dominated splitting: \(T_\Lambda M = E \oplus F, \) \(Df \)-invariant and there is \(m \) with

\[
\frac{|Df^m(v)|}{|(Df^m(w))|} \leq \frac{1}{2}
\]

for every unitary vectors \(v \in E_x \) and \(w \in F_x \) and all \(x \in \Lambda \).
domination (I)

\(f : M \to M \), diffeo., \(M \) compact and closed,
\(\Lambda : f \text{-invariant } (f(\Lambda) = \Lambda) \text{ compact set.} \)

dominated splitting: \(T_{\Lambda}M = E \oplus F \), \(Df \)-invariant and there is \(m \) with
\[
\frac{|Df^m(v)|}{|(Df^m(w))|} \leq \frac{1}{2}
\]
for every unitary vectors \(v \in E_x \text{ and } w \in F_x \) and all \(x \in \Lambda. \)
domination (I)

\[f : M \to M, \text{ diffeo., } M \text{ compact and closed,} \]

\[\Lambda : f \text{-invariant (} f(\Lambda) = \Lambda \text{) compact set.} \]

dominated splitting: \(T_\Lambda M = E \oplus F \), \(Df \)-invariant and there is \(m \) with

\[
\frac{|Df^m(v)|}{|(Df^m(w))|} \leq \frac{1}{2}
\]

for every unitary vectors \(v \in E_x \) and \(w \in F_x \) and all \(x \in \Lambda \).
domination (I)

\(f : M \to M \), diffeo., \(M \) compact and closed,
\(\Lambda : f\)-invariant (\(f(\Lambda) = \Lambda \)) compact set.

dominated splitting: \(T_\Lambda M = E \oplus F \), \(Df\)-invariant and there is \(m \) with

\[
\frac{|Df^m(v)|}{|(Df^m(w))|} \leq \frac{1}{2}
\]

for every unitary vectors \(v \in E_x \) and \(w \in F_x \) and all \(x \in \Lambda \).
domination (I)

\[f : M \to M, \text{ diffeo.}, M \text{ compact and closed}, \]

\[\Lambda : f\text{-invariant } (f(\Lambda) = \Lambda) \text{ compact set.} \]

dominated splitting: \(T_\Lambda M = E \oplus F, \) \(Df\)-invariant and there is \(m \) with

\[
\left| \frac{Df^m(v)}{|(Df^m(w))|} \right| \leq \frac{1}{2}
\]

for every unitary vectors \(v \in E_x \) and \(w \in F_x \) and all \(x \in \Lambda \).
domination (II)

Splitting with several bundles: $T\Lambda M = E_1 \oplus \cdots \oplus E_k$.

Domination: $T\Lambda M = (E_1 \oplus \cdots \oplus E_j) \oplus (E_{j+1} \oplus \cdots \oplus E_k)$ for all $j < k$.

Partial hyperbolicity: some of the extremal bundles is hyperbolic.

Finest dominated splitting: the splitting of the bundles can not be decomposed in a dominated way (indecomposable bundles).
domination (II)

splitting with several bundles: \(T_{\Lambda}M = E_1 \oplus \cdots \oplus E_k \).

domination: \(T_{\Lambda}M = (E_1 \oplus \cdots \oplus E_j) \oplus (E_{j+1} \oplus \cdots \oplus E_k) \) for all \(j < k \).

partial hyperbolicity: some of the extremal bundles is hyperbolic.

finest dominated splitting: the splitting of the bundles can not be decomposed in a dominated way (indecomposable bundles).
domination (II)

splitting with several bundles: \(T^\Lambda M = E_1 \oplus \cdots \oplus E_k. \)

domination: \(T^\Lambda M = (E_1 \oplus \cdots \oplus E_j) \oplus (E_{j+1} \oplus \cdots \oplus E_k) \) for all \(j < k. \)

partial hyperbolicity: some of the extremal bundles is hyperbolic.

finest dominated splitting: the splitting of the bundles can not be decomposed in a dominated way (indecomposable bundles).
domination (II)

splitting with several bundles: \(T_\wedge M = E_1 \oplus \cdots \oplus E_k \).

domination: \(T_\wedge M = (E_1 \oplus \cdots \oplus E_j) \oplus (E_{j+1} \oplus \cdots \oplus E_k) \) for all \(j < k \).

partial hyperbolicity: some of the extremal bundles is hyperbolic.

finest dominated splitting: the splitting of the bundles can not be decomposed in a dominated way (indecomposable bundles).
homoclinic classes (I)

especial case: \(\Lambda \) is a homoclinic class

\(\Lambda = H(p, f), \) \(p \) a saddle and \(H(p, f) \) closure of transverse intersections of the invariant manifolds of \(p. \)
homoclinic classes (I)

especial case: Λ is a homoclinic class

$\Lambda = H(p, f)$, p a saddle and $H(p, f)$ closure of transverse intersections of the invariant manifolds of p.

$H(p, f)$ may contain saddles of index (dimension of stable bundle) different from the one of p. Typical non-dynamical feature.
homoclinic classes (I)

especial case: Λ is a homoclinic class

$\Lambda = H(p, f)$, p a saddle and $H(p, f)$ closure of transverse intersections of the invariant manifolds of p.

$H(p, f)$ may contain saddles of index (dimension of stable bundle) different from the one of p. Typical non-dynamical feature.
homoclinic classes (I)

especial case: Λ is a **homoclinic class**

$\Lambda = H(p, f)$, p a saddle and $H(p, f)$ closure of transverse intersections of the invariant manifolds of p.

$H(p, f)$ may contain saddles of index (dimension of stable bundle) different from the one of p. Typical non-dynamical feature.
homoclinic classes (I)

especial case: Λ is a **homoclinic class**

$\Lambda = H(p, f)$, p a saddle and $H(p, f)$ closure of transverse intersections of the invariant manifolds of p.

$H(p, f)$ may content saddles of index (dimension of stable bundle) different from the one of p. Typical non-dynamical feature.
homoclinic classes (I)

especial case: Λ is a homoclinic class

$\Lambda = H(p, f)$, p a saddle and $H(p, f)$ closure of transverse intersections of the invariant manifolds of p.

$H(p, f)$ may content saddles of index (dimension of stable bundle) different from the one of p. Typical non-dynamical feature.
homoclinic classes (II)

caution: a homoclinic class whose saddles have all the same index may be non-hyperbolic....
types of splittings

for simplicity: **dimension of** \(M \) **is three**

possibilities for the finest dominated splitting of a homoclinic class.

- **non-critical case:** three bundles \(E^s \oplus E^c \oplus E^u \), \(E^s \) and \(E^u \) hyperbolic.
- **critical case:**
 - two bundles: \(E^s \oplus E^{cu} \) or \(E^{cs} \oplus E^u \), \(E^s \) and \(E^u \) one-dimensional and hyperbolic.
 - **non-existence.**
types of splittings

for simplicity: dimension of M is three

possibilities for the finest dominated splitting of a homoclinic class.

- **non-critical case**: three bundles $E^s \oplus E^c \oplus E^u$, E^s and E^u hyperbolic.

- **critical case**:
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^u$, E^s and E^u one-dimensional and hyperbolic.
 - non-existence.
types of splittings

for simplicity: dimension of M is three

possibilities for the finest dominated splitting of a homoclinic class.

- **non-critical case:** three bundles $E^s \oplus E^c \oplus E^u$, E^s and E^u hyperbolic.
- **critical case:**
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^u$, E^s and E^u one-dimensional and hyperbolic.
 - non-existence.
types of splittings

for simplicity: dimension of M is three

possibilities for the finest dominated splitting of a homoclinic class.

- **non-critical case**: three bundles $E^s \oplus E^c \oplus E^u$, E^s and E^u hyperbolic.
- **critical case**:
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^u$, E^s and E^u one-dimensional and hyperbolic.
 - non-existence.
types of splittings

for simplicity: **dimension of** M **is three**

possibilities for the finest dominated splitting of a homoclinic class.

- **non-critical case:** three bundles $E^s \oplus E^c \oplus E^u$, E^s and E^u hyperbolic.
- **critical case:**
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^u$, E^s and E^u one-dimensional and hyperbolic.
 - non-existence.
types of splittings

for simplicity: dimension of M is three

possibilities for the finest dominated splitting of a homoclinic class.

- **non-critical case:** three bundles $E^s \oplus E^c \oplus E^u$, E^s and E^u hyperbolic.

- **critical case:**
 - **two bundles:** $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^u$, E^s and E^u one-dimensional and hyperbolic.
 - non-existence.
types of splittings

for simplicity: dimension of M is three

possibilities for the finest dominated splitting of a homoclinic class.

- **non-critical case**: three bundles $E^s \oplus E^c \oplus E^u$, E^s and E^u hyperbolic.

- **critical case**:
 - **two bundles**: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^u$, E^s and E^u one-dimensional and hyperbolic.
 - **non-existence**.
types of splittings

for simplicity: dimension of M is three

possibilities for the finest dominated splitting of a homoclinic class.

- **non-critical case:** three bundles $E^s \oplus E^c \oplus E^u$, E^s and E^u hyperbolic.

- **critical case:**
 - two bundles: $E^s \oplus E^{cu}$ or $E^{cs} \oplus E^u$, E^s and E^u one-dimensional and hyperbolic.
 - non-existence.
dynamical features and types of splitting

\(C^1 \) generic setting:

non-hyperbolicity (homoclinic classes with saddles of different indices) always implies:

- supergrowth of the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D.-Turcat),
- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).
Dynamical features and types of splitting

C^1 generic setting:

Non-hyperbolicity (homoclinic classes with saddles of different indices) always implies:

- Supergrowth of the number of periodic points (Bonatti-D.-Fisher),
- No-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D-Turcat),
- Robust heterodimensional cycles (Bonatti-D.),
- Existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).
dynamical features and types of splitting

C^1 generic setting:

non-hyperbolicity (homoclinic classes with saddles of different indices) **always** implies:

- supergrowth of the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D.-Turcat),
- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).
dynamical features and types of splitting

C^1 generic setting:

non-hyperbolicity (homoclinic classes with saddles of different indices) always implies:

- supргrowth of the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D-Turcat),
- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).
non-hyperbolicity (homoclinic classes with saddles of different indices) **always** implies:

- supergrowth of the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D.-Turcat),
- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).
dynamical features and types of splitting

\(C^1 \) generic setting:

non-hyperbolicity (homoclinic classes with saddles of different indices) **always** implies:

- supergrowth of the number of periodic points (Bonatti-D.-Fisher),
- no-shadowing property (Sakai, Yorke-Yuan, Abdenur-D., Bonatti-D.-Turcat),
- robust heterodimensional cycles (Bonatti-D.),
- existence of non-hyperbolic ergodic measures (with uncountable support) (D.-Gorodetski).
further information, non-critical case

\[E^c \] one-dimensional

\(C^1 \)-generically:

- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- non-hyperbolic measures with full support (Bonatti-D.-Gorodetski).

higher dimensions: if \(E^c \) splits into 1D bundles....

- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- existence non-hyperbolic measures with full support and zero Lyapunov exponents.
further information, non-critical case

\[E^c \text{ one-dimensional} \]

\[C^1 \text{-generically:} \]
- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- non-hyperbolic measures with full support (Bonatti-D.-Gorodetski).

higher dimensions: if \(E^c \) splits into 1D bundles....
- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- existence non-hyperbolic measures with full support and zero Lyapunov exponents.
further information, non-critical case

E^c one-dimensional

C^1-generically:
- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- non-hyperbolic measures with full support (Bonatti-D.-Gorodetski).

higher dimensions: if E^c splits into 1D bundles....

- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- existence non-hyperbolic measures with full support and zero Lyapunov exponents.
further information, non-critical case

E^c one-dimensional

C^1-generically:
- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- non-hyperbolic measures with full support (Bonatti-D.-Gorodetski).

higher dimensions: if E^c splits into 1D bundles....
- existence of symbolic extensions (D-Fisher-Pacifico-Vietez),
- existence non-hyperbolic measures with full support and zero Lyapunov exponents.
further informations, critical case

E^c two-dimensional

- C^1-generic non-existence of symbolic extensions (D-Fisher-Pacifico-Vietez, Asaoka) based on Downarowicz-Newhouse,

- robust homoclinic tangencies (Bonatti-D.).

non-dominated

- C^1-generic non-existence of symbolic extensions,
- robust homoclinic tangencies,
- C^1-generic infinitely many sinks/sources (Bonatti-D.-Pujals).
further informations, critical case

E^c two-dimensional

- C^1-generic non-existence of symbolic extensions (D-Fisher-Pacifico-Vietez, Asaoka) based on Downarowicz-Newhouse,
- robust homoclinic tangencies (Bonatti-D.).

non-dominated

- C^1-generic non-existence of symbolic extensions,
- robust homoclinic tangencies,
- C^1-generic infinitely many sinks/sources (Bonatti-D.-Pujals).
further informations, critical case

E^c two-dimensional

- C^1-generic non-existence of symbolic extensions (D-Fisher-Pacifico-Vietez, Asaoka) based on Downarowicz-Newhouse,
- robust homoclinic tangencies (Bonatti-D.).

non-dominated

- C^1-generic non-existence of symbolic extensions,
- robust homoclinic tangencies,
- C^1-generic infinitely many sinks/sources (Bonatti-D.-Pujals).
further informations, critical case

\[E^c \text{ two-dimensional} \]

- \(C^1 \)-generic non-existence of symbolic extensions (D-Fisher-Pacifico-Vietez, Asaoka) based on Downarowicz-Newhouse,
- robust homoclinic tangencies (Bonatti-D.).

\[\text{non-dominated} \]

- \(C^1 \)-generic non-existence of symbolic extensions,
- robust homoclinic tangencies,
- \(C^1 \)-generic infinitely many sinks/sources (Bonatti-D.-Pujals).
further informations, critical case

<table>
<thead>
<tr>
<th>E^c two-dimensional</th>
</tr>
</thead>
<tbody>
<tr>
<td>C^1-generic non-existence of symbolic extensions (D-Fisher-Pacifico-Vietez, Asaoka) based on Downarowicz-Newhouse,</td>
</tr>
<tr>
<td>robust homoclinic tangencies (Bonatti-D.).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-dominated</th>
</tr>
</thead>
<tbody>
<tr>
<td>C^1-generic non-existence of symbolic extensions,</td>
</tr>
<tr>
<td>robust homoclinic tangencies,</td>
</tr>
<tr>
<td>C^1-generic infinitely many sinks/sources (Bonatti-D.-Pujals).</td>
</tr>
</tbody>
</table>
summarizing table

dimension three:

<table>
<thead>
<tr>
<th>dynamics/splitting</th>
<th>3 bundles</th>
<th>2 bundles</th>
<th>non-exist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Robust tangencies</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Robust het. cycles</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• non-hyperbolic measures</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>- full support</td>
<td>Yes</td>
<td>Yes?</td>
<td>Yes?</td>
</tr>
<tr>
<td>- # zero exponents</td>
<td>1</td>
<td>2?</td>
<td>3?</td>
</tr>
<tr>
<td>• symbolic extensions</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>• ∞-sinks/sources</td>
<td>No</td>
<td>depend</td>
<td>Yes</td>
</tr>
</tbody>
</table>