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Abstract

Let TΛ be the compact manifold of real symmetric tridiagonal matrices

conjugate to a given diagonal matrix Λ with simple spectrum. We introduce

bidiagonal coordinates, charts defined on open dense domains forming an ex-

plicit atlas for TΛ. In contrast to the standard inverse variables, consisting of

eigenvalues and norming constants, every matrix in TΛ now lies in the inte-

rior of some chart domain. We provide examples of the convenience of these

new coordinates for the study of asymptotics of isospectral dynamics, both

for continuous and discrete time.

Keywords: Jacobi matrices, tridiagonal matrices, norming constants, Toda flows,
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1 Introduction

Let Λ be a real diagonal matrix with simple spectrum and TΛ be the manifold of
real, symmetric, tridiagonal matrices having the same spectrum as Λ. The purpose
of this paper is to present an explicit atlas for TΛ: the charts in the atlas define the
bidiagonal coordinates on open dense subsets of TΛ. As is familiar to numerical ana-
lysts, many algorithms to compute spectra operate by iteration on Jacobi matrices,
yielding approximations of reduced tridiagonal matrices. Given a limit point p for
such iterations, there is a chart in the atlas containing p in its interior, reducing
the study of asymptotic behavior to a matter of local theory. The construction
of the atlas was motivated by our study of the asymptotics of the Wilkinson shift
iteration: we use bidiagonal coordinates to prove that this well known algorithm
deflates cubically for generic spectra ([10]) but only quadratically for certain initial
conditions ([11]).

Jacobi matrices are frequently parameterized by its (simple) eigenvalues and the
vector w of (positive) first coordinates of its normalized eigenvectors, the norming
constants. An algorithm to recover a Jacobi matrix from these data was known
to Stieltjes ([13]). From the procedure, one learns that the set JΛ ⊂ TΛ of Jacobi
matrices with prescribed simple spectrum is diffeomorphic to R

n−1. Norming con-
stants break down at the boundary of JΛ, and new techniques are required to study
its closure J̄Λ within the space of symmetric matrices. In [19], J̄Λ was proved to be
homeomorphic to a convex polytope PΛ and the boundary of J̄Λ was described as a
union of cells of reduced tridiagonal matrices. But one may go beyond: by making
all possible changes of sign along the off-diagonal entries (i+1, i) of the matrices in
J̄Λ, one obtains 2n−1 copies of J̄Λ, which glue along their boundaries to form the
compact manifold TΛ.

There are significant theoretical advantages for considering the manifold TΛ

instead of JΛ or even J̄Λ. In algorithms to compute the spectrum of Jacobi matrices,
the limit point is usually a reduced matrix: if the limit point lies in the interior of
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the domain, asymptotic behavior becomes amenable to local theory. Furthermore,
signs of off-diagonal entries are often dropped in such algorithms. This procedure,
which is computationally practical, may introduce theoretical complications akin
to inserting absolute values on a smooth function. Enlarging the domain of such
iterations to TΛ may allow for a choice of signs which respects smoothness: one is
then entitled to use Taylor expansions in the local study of the iteration.

The bidiagonal coordinates βπ
i , i = 1, . . . , n−1, which play the role of generalized

norming constants, are defined on a cover Uπ
Λ of open dense subsets of TΛ indexed by

permutations π ∈ Sn. On each Uπ
Λ , the bidiagonal coordinates give rise to a chart of

the atlas, i.e., a diffeomorphism to ψπ : Uπ
Λ → R

n−1. The underlying construction
is easy to describe. A matrix M is LU -positive if it admits a (unique) factorization
M = LU where L is lower unipotent (i.e., lower triangular with unit diagonal) and
U is upper triangular with positive diagonal entries. Set Λ = diag(λ1, . . . , λn), λ1 <
· · · < λn and, for π ∈ Sn, let Λπ = diag(λπ(1), . . . , λπ(n)). A matrix T ∈ TΛ belongs
to Uπ

Λ if it admits a diagonalization T = Q∗
πΛπQπ for some orthogonal LU -positive

matrix Qπ = LπUπ; in particular, Λπ ∈ Uπ
Λ . Now set Bπ = L−1

π ΛπLπ = UπTU
−1
π .

From the formulae, Bπ is simultaneously lower triangular and upper Hessenberg,
hence lower bidiagonal. The construction of the chart is complete:

Bπ =















λπ(1)

βπ
1 λπ(2)

βπ
2 λπ(3)

. . .
. . .

βπ
n−1 λπ(n)















, ψπ(T ) = (βπ
1 , . . . , β

π
n−1).

It turns out that if T ∈ TΛ is unreduced then T ∈ Uπ
Λ for all π ∈ Sn (Lemma 3.2).

As far as we know, this construction of the matrices Lπ and Bπ was first used
by Terwilliger in his study of Leonard pairs ([17]); our matrix Lπ, for example,
appears in his lemma 4.4 as Er. Carnicer and Peña ([3]) also consider changes of
basis leading to bidiagonal matrices in their study of oscillatory matrices.

For Jacobi matrices, bidiagonal coordinates are, up to a multiplicative factor,
quotients of norming constants (Proposition 3.6):

βπ
i =

∣

∣

∣

∣

(λπ(i+1) − λπ(1)) · · · (λπ(i+1) − λπ(i))

(λπ(i) − λπ(1)) · · · (λπ(i) − λπ(i−1))

∣

∣

∣

∣

wπ(i+1)

wπ(i)
, 1 ≤ i ≤ n− 1

where wπ(i) = |(Qπ)i,1|. Norming constants, however, yield no chart for a neighbor-
hood of a diagonal matrix in TΛ. Bidiagonal coordinates imply that in Uπ

Λ appropri-
ate quotients of norming constants wπ(i+1)/wπ(i) admit natural smooth extensions,
a fact discussed in [7] and [12]. There is however no satisfactory definition for the
sign of norming constants for matrices throughout TΛ: this will be discussed more
carefully at the end of Section 2.

In the next two sections, we consider the theoretical setup. Section 2 contains
some basic facts about Jacobi matrices and norming constants, presented using the
concept of LU -positivity so as to prepare the reader to the discussion of bidiagonal
coordinates. We also collect some geometric properties of the isospectral manifold
TΛ: the case n = 3 is taken as a detailed example. In section 3, we describe the
domains Uπ

Λ both in terms of LU -positivity and based on a cell decomposition of
TΛ. We then construct the charts ψπ : Uπ

Λ → R
n−1 and their inverses φπ: the

bidiagonal coordinates for T ∈ Uπ
Λ are (βπ

1 , . . . , β
π
n−1) = ψπ(T ). We also prove that

the quotients βπ
i /((T )i+1,i) are smooth strictly positive functions in Uπ

Λ .
In order to provide applications, we concentrate on two kinds of dynamics acting

on Jacobi matrices: QR steps (Section 4) and Toda flows (Section 5). Algorithms
to compute eigenvalues of Jacobi matrices which are related to the QR factoriza-
tion, as well as the flows in the Toda hierarchy, admit a very simple description in
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bidiagonal coordinates: they evolve linearly in time. From this description, limits
at infinity (with asymptotic rates) are immediate. As a slightly more complicated
example, we prove the cubic convergence of the Rayleigh quotient shift iteration
using a Taylor expansion. More precisely, given Λ, let G(T ) ∈ TΛ be obtained
from T ∈ TΛ by a Rayleigh quotient step: we prove that there exist c, ǫ > 0 such
that if |(T )n,n−1| < ǫ then |(G(T ))n,n−1| < min(ǫ, c|(T )n,n−1|

3). The reader should
compare this argument with the more complicated study of the asymptotics of the
Wilkinson’s shift iteration in [10] and [11]. We conclude the paper with the compu-
tation of the wave and scattering maps of the standard Toda flow, a physical system
consisting of n particles on the line under the influence of a special Hamiltonian.
Moser ([13]) had previously computed the scattering map and Percy Deift (personal
communication) the wave map, but our arguments are significantly different.

We thank the comments presented by the referees, which led to a much improved
text. The authors gratefully acknowledge support from CNPq, CAPES, IM-AGIMB
and FAPERJ.

2 Tridiagonal matrices

We begin this section by sketching some classical facts about tridiagonal matrices
([13], [14]) in a phrasing appropriate to our purposes. Let T be the vector space
of real, tridiagonal, n × n symmetric matrices. A matrix T ∈ T is Jacobi (resp.
unreduced) if Ti+1,i > 0 (resp. Ti+1,i 6= 0) for i = 1, 2, . . . , n − 1. Let J ⊂ T be
the open cone of Jacobi matrices and R

n
o be the open cone {(x1, . . . , xn), x1 < · · · <

xn}. The ordered spectrum map σo is defined on the open set of real symmetric
matrices with simple spectrum: σo(S) = (λ1, . . . , λn) ∈ R

n
o lists the eigenvalues

of S in increasing order. Let O(n) be the group of real orthogonal matrices of
order n. For an invertible M , write the unique QR factorization M = Q(M)R(M),
for Q(M) ∈ O(n) and R(M) upper triangular with positive diagonal. Similarly,
when the leading principal minors of M are invertible, write the LU factorization
M = L(M)U(M) where L(M) is lower unipotent (i.e., lower triangular with unit
diagonal) and U(M) is upper triangular.

For a permutation π ∈ Sn, consider the matrix Pπ with (i, j) entry equal 1 if and
only if i = π(j) (thus Pπ1π2

= Pπ1
Pπ2

and Pπei = eπ(i)). For Λ = diag(λ1, . . . , λn),
with λ1 < · · · < λn, set

Λπ = P−1
π ΛPπ = diag(λπ(1), λπ(2), . . . , λπ(n)) = diag(λπ

1 , λ
π
2 , . . . , λ

π
n).

Finally, let E ⊂ O(n) be the group of sign diagonals, i.e., matrices of the form
E = diag(±1,±1, . . . ,±1).

Definition 2.1 A square matrix M is LU -positive if U(M) is well defined and
the diagonal entries of U(M) are positive. Given T ∈ T , Λ = diag(σo(T )) and a
permutation π, the factorization T = Q∗

πΛπQπ is a π-normalized diagonalization if
the orthogonal matrix Qπ is LU -positive.

Equivalently, M is LU -positive if the determinants of its leading principal minors
are positive. The π-normalized diagonalization of T ∈ T is unique if it exists.
Indeed, two factorizations Q∗

1Λ
πQ1 = Q∗

2Λ
πQ2 yield Q2 = EQ1 for some E ∈ E ,

Q1 and Q2 both LU -positive: we must have E = I.
We recast a standard result for our purposes.

Theorem 2.2 The eigenvalues of a Jacobi matrix J are distinct. Given J and
a permutation π ∈ Sn, J admits a (unique) π-normalized diagonalization J =
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Q∗
πΛπQπ where Λ = diag(σo(J)). The coordinates of Qπe1 are nonzero. The map

below is a diffeomorphism:

Γπ : J → R
n
o × {w ∈ R

n | ||w|| = 1, wi > 0}

J 7→ (σo(J), (|(Qπ)11|, |(Qπ)21|, . . . , |(Qπ)n1|)) .

The second entry w of Γπ(J) lists the norming constants of J . For different
π ∈ Sn, the coordinates of w are merely permuted. Indeed, if J = Q∗ΛQ and
J = Q∗

πΛπQπ then Qπ = EP−1
π Q for some E ∈ E .

Proof: Simplicity of the spectrum of J and the fact that the first coordinate
of each eigenvector is nonzero are standard facts ([14]). In other words, given a
diagonalization J = Q̃∗ΛπQ̃, the coordinates of w̃ = Q̃e1 are nonzero. Clearly,
the matrices Q̂ ∈ O(n) for which J = Q̂∗ΛπQ̂ are of the form Q̂ = EQ̃ for a sign
diagonal E ∈ E , i.e., we may change signs of rows of Q̃. The values of |(Q̂)i1| do not
depend on the choice of Q̂ thus allowing us to define the smooth map Γπ using any
diagonalization (not necessarily π-normalized). We show that one such matrix Q̂ is
LU -positive and that Γπ is a diffeomorphism by constructing the inverse of Γπ.

Construct a Vandermonde matrix V with Vij = λj−1
π(i) and a positive diagonal

matrix W̃ = diag(w̃1, . . . , w̃n). The well known formula for the determinant of a
Vandermonde matrix implies that the leading principal minors of V are nonzero.
Thus, there exists a unique sign diagonal E ∈ E such that EV is LU -positive: the
matrices EW̃V = W̃EV and Q̃ = Q(EW̃V ) are therefore also LU -positive. We
claim that J̃ = Q̃∗ΛπQ̃ is a Jacobi matrix.

To prove tridiagonality, we show that J̃ij = 〈J̃ej , ei〉 = 〈ΛπQ̃ej , Q̃ei〉 equals 0 for

i > j + 1. For j = 1, . . . , n, consider the columns uj = (Λπ)j−1Ew̃ and q̃j of EW̃V

and Q̃, respectively. The Krylov subspace Kj spanned by u1, . . . , uj is also spanned

by the orthonormal vectors q̃1, . . . , q̃j since Q̃R̃ = EW̃V where R̃ = R(EW̃V ) is
upper triangular with positive diagonal. We have ΛπKj ⊂ Kj+1 and therefore Λπ q̃j
is a linear combination of q̃1, . . . , q̃j+1 and 〈Λπ q̃j , q̃i〉 = 0 as needed.

We now show that J̃j+1,j > 0. The factorization Q̃R̃ = EW̃V implies that

q̃i − (R̃ii)
−1ui ∈ Ki−1 and similarly ui+1 − R̃i+1,i+1q̃i+1 ∈ Ki. Applying Λπ to the

first relation we have Λπ q̃i − (R̃ii)
−1ui+1 ∈ Ki and using the second relation we

obtain Λπ q̃i − (R̃ii)
−1R̃i+1,i+1q̃i+1 ∈ Ki. Now, since Ki ⊥ q̃i+1, we have J̃j+1,j =

〈Λπ q̃i, q̃i+1〉 = (R̃ii)
−1R̃i+1,i+1〈q̃i+1, q̃i+1〉 = (R̃ii)

−1R̃i+1,i+1 > 0.

Adding up, J̃ = Q̃∗ΛπQ̃ is the π-normalized diagonalization of the Jacobi matrix
J̃ . From this construction, the inverse of Γπ is smooth, completing the proof. �

Let JΛ ⊂ J be the set of Jacobi matrices J with diag(σo(J)) = Λ: norming con-
stants (or, more precisely, the second coordinate w of Γπ) obtain a diffeomorphism
between JΛ and the positive orthant of the unit sphere {w ∈ R

n | ||w|| = 1, wi > 0}.
Let J̄Λ be the closure of JΛ in T : clearly, the boundary of J̄Λ consists of reduced
tridiagonal matrices with non-negative off-diagonal entries, including the n! diago-
nal matrices obtained by permuting the eigenvalues λ1, . . . , λn. The boundary of J̄Λ

is not a smooth manifold: it has a polytope-like cell structure which was described
in [19]. We now give a more explicit description.

For T ∈ J̄Λ, write a diagonalization T = Q∗ΛQ, Q ∈ O(n). Consider the matrix
T̂ = QΛQ∗: this matrix is not well defined (due to the sign ambiguity in Q) but
the diagonal of T̂ is. Define ι(T ) to be the diagonal matrix coinciding with T̂ on
the diagonal. Also, let PΛ be the convex hull of the set of n! matrices Λπ, π ∈ Sn.

Theorem 2.3 ([2]) The map ι constructed above is a homeomorphism ι : J̄Λ → PΛ

which is a smooth diffeomorphism between interiors. Furthermore, ι(Λπ) = Λπ−1

.
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The original proof of this theorem uses a result of Atiyah on the convexity of the
image of moment maps defined on Kähler manifolds [1]; a more elementary proof is
given in [12]. We find this sequence of results to be a good example of the interplay
between high and low roads in linear algebra, so eloquently described in [18].

We now present in detail the case n = 3, where J̄Λ and PΛ have dimension 2.
Take Λ = diag(4, 5, 7); PΛ is a hexagon contained in the plane x+y+ z = 4+5+7.
The spaces J̄Λ and PΛ are given in Figure 1. The polygon PΛ is drawn in scale;
the drawing of J̄Λ is schematic.

(7,5,4)

(7,4,5) (5,4,7)

(4,7,5)(5,7,4)

(4,5,7)

(7,4,5) (4,7,5)

(7,5,4)

(*,*,5)
(7,*,*)

(5,7,4)

(*,*,4)

(5,4,7)

(4,5,7)

(5,*,*)
(*,*,7)

(4,*,*)

Figure 1: The spaces J̄Λ and PΛ for Λ = diag(4, 5, 7)

The triples in the diagram of J̄Λ are of two kinds. The vertices, which are
diagonal matrices, are labelled by the three diagonal entries. The edges have stars
in the place of a 2×2 block. Thus, for instance, the edge (∗, ∗, 7) consists of matrices
of the form

1

2





9 − cos 2θ sin 2θ 0
sin 2θ 9 + cos 2θ 0

0 0 14



 =





c s 0
−s c 0
0 0 1









4 0 0
0 5 0
0 0 7









c −s 0
s c 0
0 0 1





where θ goes from 0 to π/2, c = cos θ and s = sin θ. Notice that the vertices in J̄Λ

and PΛ have different adjacencies, in accordance with Theorem 2.3: Λπ1 and Λπ2

are adjacent in PΛ if and only if Λπ−1

1 and Λπ−1

2 are adjacent in J̄Λ.

Allowing arbitrary signs at off-diagonal entries, we consider the tridiagonal
isospectral manifold TΛ, the set of real symmetric tridiagonal matrices T which are
conjugate to Λ. Define the sign sequence of an unreduced matrix T as signseq(T ) =
(sign(T21), sign(T32), . . . , sign(Tn,n−1)). The subset of TΛ of unreduced matrices
splits into 2n−1 connected components according to the sign sequence. Conjugation
by sign diagonals takes one component to another. Thus, TΛ is obtained by gluing
2n−1 copies of J̄Λ along their boundaries.

It is shown in [19] that TΛ is a compact orientable manifold by proving that
simple spectra are regular values of the restriction to T of the ordered spectrum
map σo.

For Λ = diag(4, 5, 7), Figure 2 shows the manifold TΛ, a bitorus. The vector
space T receives an Euclidean metric via the inner product 〈T1, T2〉 = tr(T1T2).
The manifold TΛ is then contained in the intersection of the hyperplane of matrices
of trace 4 + 5 + 7 and the sphere of matrices T with 〈T, T 〉 = 42 + 52 + 72: this
intersection is isometric to a sphere centered at the origin in R

4. A stereographic
projection takes this sphere (and its subset TΛ) to R

3: Figure 2 is a snapshot of
the image of TΛ under this projection. The small gaps were artificially introduced:
these tubular neighborhoods of circles in R

3 split the manifold into the four hexagons
EJ̄ΛE, E ∈ E .

Figure 3 shows again TΛ for this example in a more schematic fashion. The
four hexagons stand for the components of the subset of unreduced matrices: sign
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Figure 2: A 3d rendition of TΛ for Λ = diag(4, 5, 7)

sequences label the hexagons. Vertices are diagonal matrices and edges with the
same label are identified.

The bitorus is decomposed as a disjoint union of four open hexagons, six open
edges and six vertices. We generalize this cell decomposition. Any tridiagonal
matrix T ∈ TΛ splits into unreduced blocks T1, . . . , Tk along the diagonal. Consider
the subspectra Λi = diag(σo(Ti)) and the sign sequences signseq(Ti). The (open)
cell containing T is the subset of TΛ of matrices with the same block partition,
subspectra and sign sequences as T . The cell containing T is naturally identified
with JΛ1

× · · · ×JΛk
and therefore diffeomorphic to R

n−k, from Theorem 2.2. The
vertices (or cells of dimension 0) of TΛ are the diagonal matrices Λπ and the set JΛ

of Jacobi matrices is the cell of maximal dimension n − 1 defined by signseq(T ) =
(+,+, . . . ,+).

(5,7,4)

(5,4,7)

(4,5,7)

(4,7,5)

(7,5,4)

(4,5,7)

(5,4,7)

(7,5,4)(5,7,4)

(5,4,7)

(4,5,7)

(4,7,5)

(4,5,7)

(5,4,7)

(5,7,4)

g a

c

c

ag

h

h

(7,4,5)

(5,7,4)

−+ ++

−− +−

b b

ff

d

e

d

e

Figure 3: Gluing instructions for the manifold TΛ

The reader should notice that norming constants do not admit a smooth natural
extension to TΛ. Indeed, again in Figure 3, norming constants are positive on the ++
cell of Jacobi matrices. Crossing the horizontal axis to the cell +− takes the norming
constant w2 (associated with λ2 = 5) through 0 so, to guarantee smoothness, we
should have signs + − + for the norming constants in the cell +−. On the other
hand, we can also go from ++ to +− through the edges a or c and such crossings
would induce the sign patterns − + + and + + −, respectively.
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3 Bidiagonal coordinates

In this section, we construct an atlas for TΛ given by a family of charts ψπ indexed
by the permutations π ∈ Sn. Each chart is a diffeomorphism ψπ : Uπ

Λ → R
n−1

and the chart domains Uπ
Λ , centered at the diagonal matrices Λπ (in the sense that

ψπ(Λπ) = 0), form an open cover of TΛ. The bidiagonal coordinates βπ
i for a matrix

T ∈ Uπ
Λ are the entries of the vector ψπ(T ).

For n = 3, Λ = diag(4, 5, 7) and π given by π(1) = 3, π(2) = 1, π(3) = 2 so that
Λπ = diag(7, 4, 5) the set Uπ

Λ is the interior of the polygon in Figure 3. Bidiagonal
coordinates were used to produce Figure 2: TΛ was partitioned into six quadri-
laterals centered at diagonal matrices. This decomposition of TΛ has four vertices
(one in the interior of each of the four hexagons described in the previous section);
each quadrilateral touches each vertex once. In the figure, the small gaps split each
quadrilateral into four smaller ones; boundaries between quadrilaterals are visible
as the lines along which the mesh loses smoothness. Lines in each quadrilateral are
level curves of bidiagonal coordinates βπ

i . We first define the chart domains Uπ
Λ .

Definition 3.1 For a permutation π, the chart domain Uπ
Λ is the set of matrices

T ∈ TΛ admitting a π-normalized diagonalization, i.e., the matrices T for which
there exists an LU -positive matrix Qπ ∈ O(n) with T = Q∗

πΛπQπ.

We now present some properties of the sets Uπ
Λ .

Lemma 3.2 (a) The sets Uπ
Λ ⊂ TΛ form an open cover of TΛ.

(b) If E ∈ E and T ∈ Uπ
Λ then ETE ∈ Uπ

Λ .

(c) If T ∈ TΛ is unreduced then T ∈ Uπ
Λ for all permutations π. In particular, each

set Uπ
Λ is dense in TΛ.

(d) Take T ∈ TΛ with unreduced blocks T1, . . . , Tk of dimensions n1, . . . , nk along
the diagonal. For a permutation π, split Λπ in blocks:

(Λπ)i = diag(λπ
n1+···+ni−1+1, . . . , λ

π
n1+···+ni−1+ni

).

Then T ∈ Uπ
Λ if and only if Ti is conjugate to (Λπ)i for i = 1, . . . , k.

Proof: (a) For T ∈ TΛ, write T = Q∗ΛQ for some Q ∈ O(n). Write the PLU
factorization of Q, i.e., Q = PLU where P is a permutation matrix, L is lower
unipotent and U is upper triangular. Notice that this is usually possible for P = Pπ

for several permutations π ∈ Sn. Thus, all the leading principal minors of P−1
π Q

are invertible and there exists E ∈ E such that Qπ = EP−1
π Q is LU -positive and

T = Q∗ΛQ = Q∗
πΛπQπ belongs to Uπ

Λ . The set of LU -positive matrices is open in
R

n×n and therefore each Uπ
Λ is also open in TΛ.

(b) If T = Q∗
πΛπQπ is the π-normalized factorization of T ∈ Uπ

Λ then ETE =
(EQπE)∗Λπ(EQπE). The matrix EQπE is LU -positive and therefore ETE ∈ Uπ

Λ .
(c) The case where T is a Jacobi matrix is discussed in Theorem 2.2. If T is
unreduced then there exists E ∈ E such that ETE is Jacobi and item (b) completes
the argument.
(d) Consider a permutation π, T ∈ TΛ with unreduced blocks T1, . . . , Tk and the
diagonal blocks (Λπ)i as above. From item (c), if Ti and (Λπ)i are conjugate then
there exist LU -positive matrices Qi ∈ O(ni) with Ti = Q∗

i (Λ
π)iQi. Let Q̃ be the

matrix with blocks Qi: the matrix Q̃ is LU -positive and orthogonal; T = (Q̃)∗ΛπQ̃
implies T ∈ Uπ

Λ .
Conversely, assume that T ∈ Uπ

Λ admits a block decomposition. Then T =
(PπLU)−1Λ(PπLU) yields UTU−1 = L−1ΛπL and we therefore have UiTiU

−1
i =

L−1
i (Λπ)iLi where Ui and Li are blocks along the diagonal for U and L. �
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Item (d) yields an alternative description of the chart domain Uπ
Λ : it is the union

of all cells in TΛ whose closure contains Λπ.
We now construct charts ψπ : Uπ

Λ → R
n−1 and their inverses φπ.

Definition 3.3 Given βπ
1 , . . . , β

π
n−1 and Λπ = diag(λπ

1 , . . . , λ
π
n) build the bidiagonal

matrix

Bπ =















λπ
1

βπ
1 λπ

2

βπ
2 λπ

3

. . .
. . .

βπ
n−1 λπ

n















.

Take the diagonalization Bπ = L−1
π ΛπLπ where Lπ is lower triangular with unit

diagonal. Define the inverse chart φπ : R
n−1 → Uπ

Λ by

φπ(βπ
1 , . . . , β

π
n−1) = Q(Lπ)∗ Λπ Q(Lπ).

Notice that φπ(0) = Λπ. It is easy to see that a matrix Lπ as above exists; an
explicit formula for its entries is given in the proof of Proposition 3.6. The claim
that Uπ

Λ is a valid counterdomain for φπ requires a proof. Set Qπ = Q(Lπ): the
matrix T = φπ(βπ

1 , . . . , β
π
n−1) = Q∗

π Λπ Qπ is clearly symmetric. On the other hand,
the factorization T = R(Lπ)Bπ(R(Lπ))−1 implies that T is upper Hessenberg and
therefore T ∈ TΛ. Since R(Lπ) has positive diagonal and Qπ = Lπ(R(Lπ))−1, we
have that the matrix Qπ is LU -positive, T = Q∗

π Λπ Qπ is a π-normalized diagonal-
ization and therefore T ∈ Uπ

Λ .

Definition 3.4 For T ∈ Uπ
Λ , take its π-normalized diagonalization T = Q∗

πΛπQπ

and write Lπ = L(Qπ), Uπ = U(Qπ), Rπ = U−1
π . Set

Bπ = R−1
π TRπ = L−1

π ΛπLπ.

The matrix Bπ is bidiagonal and its off-diagonal entries βπ
i = (Bπ)i+1,i, i =

1, . . . , n − 1, are the π-bidiagonal coordinates of T . The chart ψπ : Uπ
Λ → R

n−1 is
the map taking T to (βπ

1 , . . . , β
π
n−1).

We prove that Bπ is indeed bidiagonal. From Bπ = R−1
π TRπ, Bπ is upper

Hessenberg and from Bπ = L−1
π ΛπLπ, it is lower triangular with diagonal entries

λπ
1 , . . . , λ

π
n.

The maps ψπ and φπ are clearly smooth. By construction, one is the inverse of
the other, implying the following result.

Theorem 3.5 The map φπ : R
n−1 → Uπ

Λ is a diffeomorphism with inverse ψπ :
Uπ

Λ → R
n−1.

As an example of bidiagonal coordinates, let Λ = diag(4, 5, 7). Set π(1) = 3,
π(2) = 1, π(3) = 2. Matrices will be described by their π-bidiagonal coordinates
x = βπ

1 and y = βπ
2 . Since Bπ = L−1

π ΛπLπ, we obtain

Λπ =





7 0 0
0 4 0
0 0 5



 , Bπ =





7 0 0
x 4 0
0 y 5



 , Lπ =





1 0 0
−x/3 1 0
−xy/2 y 1





and writing Qπ = LπUπ we have

Qπ =
1

r1r2





6r2 6x(2 + 3y2) xyr1
−2xr2 3(12 + x2y2) −6yr1
−3xyr2 2y(18 − x2) 6r1



 ,
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where r1 =
√

36 + 4x2 + 9x2y2 and r2 =
√

36 + 36y2 + x2y2. From T = Q∗
πΛπQπ,

we have T = Λπ +M/(r21r
2
2) where

M =





−6x2(2 + 3y2)r22 6xr32 0
6xr32 (72 + 108y2)r21 − (72 − 4x2)r22 6yr31

0 6yr31 −2y2(18 − x2)r21



 .

This is an explicit parametrization φπ : R
2 → Uπ

Λ ⊂ TΛ of the polygon in Figure
3. From this formula, x = 0 implies (T )11 = 7 and (T )21 = 0 while y = 0 gives
(T )33 = 5, (T )32 = 0, consistent with the description of Uπ

Λ in Lemma 3.2.

Proposition 3.6 For any permutation π and any Jacobi matrix J ∈ JΛ, the norm-
ing constants wi and the π-bidiagonal coordinates βπ

i are related by

wπ(i) = wπ(1)

∣

∣

∣

∣

βπ
1 · · ·βπ

i−1

(λπ
i − λπ

1 ) · · · (λπ
i − λπ

i−1)

∣

∣

∣

∣

, 2 ≤ i ≤ n,

βπ
i =

∣

∣

∣

∣

(λπ(i+1) − λπ(1)) · · · (λπ(i+1) − λπ(i))

(λπ(i) − λπ(1)) · · · (λπ(i) − λπ(i−1))

∣

∣

∣

∣

wπ(i+1)

wπ(i)
, 1 ≤ i ≤ n− 1.

Proof: Let Λπ and Bπ be as above. Set

L =



























1 0 0 · · · 0

βπ
1

λπ
2
−λπ

1

1 0 · · · 0

βπ
1

βπ
2

(λπ
3
−λπ

1
)(λπ

3
−λπ

2
)

βπ
2

λπ
3
−λπ

2

1 · · · 0

...
...

...
...

βπ
1

βπ
2
···βπ

n−1

(λπ
n−λπ

1
)(λπ

n−λπ
2
)···(λπ

n−λπ
n−1

)

βπ
2
···βπ

n−1

(λπ
n−λπ

2
)···(λπ

n−λπ
n−1

) · · · 1



























.

A straightforward computation verifies that LBπ = ΛπL and therefore L = Lπ.
Norming constants are given by the absolute values of entries in the first column

of Qπ which in turn is the normalization of the first column of Lπ. �

Bidiagonal coordinates change signs together with off-diagonal entries in a simple
fashion.

Lemma 3.7 If E = diag(σ1, . . . , σn) ∈ E, T ∈ Uπ
Λ , and ψπ(T ) = (βπ

1 , . . . , β
π
n−1)

then ψπ(ETE) = (σ1σ2β
π
1 , . . . , σn−1σnβ

π
n−1). In other words, if Bπ and B̃π are the

bidiagonal matrices associated to T and ETE (as in Definition 3.4), respectively,
then B̃π = EBπE.

Proof: From Lemma 3.2, if T ∈ Uπ
Λ then T̃ = ETE ∈ Uπ

Λ . Clearly, if the π-
normalized decomposition of T is T = Q∗

πΛπQπ then ETE = (EQπE)∗Λπ(EQπE)
is the π-normalized diagonalization of ETE. Also, L(EQπE) = EL(Qπ)E and
therefore, if Lπ = L(Qπ) then B̃π = (ELπE)−1Λπ(ELπE) = EBπE. �

Norming constants break down at the boundary of J̄Λ. We will prove in the
following proposition, however, that near a reduced matrix T with (T )i+1,i = 0
the values of (T )i+1,i and βπ

i are comparable. This will be useful when we use
bidiagonal coordinates to study the asymptotics of isospectral maps.

Proposition 3.8 Given Λ and π, the quotient qπ
i : Uπ

Λ → R defined by qπ
i (T ) =

βπ
i (T )/((T )i+1,i) is smooth, positive and qπ

i (Λπ) = 1. Also, qπ
i (ETE) = qπ

i (T ) for
all T ∈ Uπ

Λ and E ∈ E.
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In particular βπ
i and (T )i+1,i have the same sign regardless of π.

Proof: Clearly, (T )i+1,i = 0 if and only if ETE = T where Ej,j = 1 (resp. −1)
for j ≤ i (resp. j ≥ i + 1). Thus, from Lemma 3.7, βπ

i (T ) = 0 if and only if
(T )i+1,i = 0.

We study the i-th partial derivative of (φπ(βπ
1 , . . . , β

π
n−1))i+1,i when βπ

i = 0.
Take a path T : R → TΛ, T (t) = φπ(βπ

1 , . . . , t, . . . , β
π
n−1). From Lemma 3.7, all

entries of T (t) except (i+ 1, i) (and (i, i+ 1)) are even functions of t and therefore
the corresponding entries of T ′(0) equal 0. On the other hand, since φπ is a dif-
feomorphism, T ′(0) must be nonzero. It follows that (T ′(0))i+1,i 6= 0 and therefore
qπ
i (T ) is well defined, smooth and nonzero even when the denominator vanishes,

i.e., at reduced matrices.
The symmetry property indicated in the last claim follows from Lemma 3.7.

Positivity is obvious for Jacobi matrices, extends to unreduced matrices by sym-
metry and to reduced matrices by continuity. In order to compute qπ

i (Λπ), con-
sider the path T (t) = φπ(0, . . . , t, . . . , 0) (with t in the i-th position). Clearly,
Bπ(t) = Λπ + t(ei+1)

∗ei so that βπ
i (t) = t. A straightforward computation yields

(T (t))i+1,i =
(λπ

i+1 − λπ
i )2

(λπ
i+1 − λπ

i )2 + t2
t; qπ

i (T (t)) =
(λπ

i+1 − λπ
i )2 + t2

(λπ
i+1 − λπ

i )2
.

The result now follows by setting t = 0. �

4 Iterations in Uπ
Λ

We now apply bidiagonal coordinates to the study of the dynamics of QR type
iterations. As a simple example, we present in Theorem 4.2 a new proof of the
well known fact that the Rayleigh quotient shift iteration has cubic convergence.
A subtler example is the Wilkinson’s shift iteration which is studied with the same
technique in [10] and [11]. Excellent references for the spectral theory of Jacobi
matrices are [5], [8] and [14].

For an open neighborhood X ⊂ R of the spectrum {λ1, . . . , λn} = σ(Λ) and a
continuous function f : X → R taking nonzero values on σ(Λ), there is a smooth
map F : TΛ → TΛ, the QR step induced by f , given by

F (T ) = Q(f(T ))∗ T Q(f(T )).

Continuity of f is sufficient to imply that F is a well defined smooth function:
indeed, if f and the polynomial p coincide on σ(Λ) then f(T ) = p(T ) for all T ∈ TΛ

and therefore F = P , the QR step induced by p. The standard QR step corresponds
to f(x) = x. Since T and f(T ) commute, we also have

F (T ) = R(f(T ))T R(f(T ))−1.

From the first formula, F (T ) is symmetric; from the second, it is upper Hessenberg
with sub-diagonal elements with the same signs as in T . Thus, F : TΛ → TΛ

preserves JΛ, the other cells and the open subsets Uπ
Λ .

Let Fφπ = φ−1
π ◦ F ◦ φπ : R

n−1 → R
n−1; in other words, Fφπ is obtained from

F |Uπ
Λ

by a change of variables using bidiagonal coordinates.

Proposition 4.1 For f taking nonzero values on the spectrum of T ,

Fφπ (βπ
1 , . . . , β

π
n−1) =

(∣

∣

∣

∣

f(λπ(2))

f(λπ(1))

∣

∣

∣

∣

βπ
1 , . . . ,

∣

∣

∣

∣

f(λπ(n))

f(λπ(n−1))

∣

∣

∣

∣

βπ
n−1

)

.
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Also, QR iterations generically converge to diagonal matrices. More precisely, if
T ∈ Uπ

Λ and |f(λπ(1))| > |f(λπ(2))| > · · · > |f(λπ(n))|, then limk→+∞ F k(T ) = Λπ

with asymptotics

βπ
i = lim

k→+∞
(F k(T ))i+1,i

∣

∣

∣

∣

f(λπ(i))

f(λπ(i+1))

∣

∣

∣

∣

k

.

Proof: Take T ∈ Uπ
Λ and set T ′ = F (T ) = Q(f(T ))∗TQ(f(T )). We show that T ′ ∈

Uπ
Λ and relate the corresponding matrices Bπ and B′

π. Consider the π-normalized
diagonalization T = Q∗

πΛπQπ and write Lπ = L(Qπ). Since f(T ) = Q∗
πf(Λπ)Qπ

and Q(ZM) = ZQ(M) for an arbitrary matrix Z ∈ O(n) and invertible M , we
have T ′ = (Q̃)∗ΛπQ̃ where Q̃ = QπQ(Q∗

πf(Λπ)Qπ) = Q(f(Λπ)Qπ). Take Q′
π =

Q(|f |(Λπ)Qπ): clearly, Q′
π is LU -positive and Q′

π = EQ̃ for some E ∈ E and
therefore T ′ = (Q′

π)∗ΛπQ′
π is the π-normalized diagonalization of T ′ ∈ Uπ

Λ . Write
Lπ = L(Qπ), L′

π = L(Q′
π). Since L(M) = L(MR) for arbitrary LU -positive

matrices M and invertible, upper triangular R, we have L(M) = L(Q(M)) and
thus L′

π = L(|f |(Λπ)Qπ). Notice that if D is an invertible diagonal matrix and M
is LU -positive then L(DM) = DL(M)D−1: we obtain L′

π = |f |(Λπ)Lπ(|f |(Λπ))−1

and therefore
B′

π = (L′
π)−1ΛπLπ = (|f |(Λπ))Bπ(|f |(Λπ))−1.

This finishes the proof of the first formula. The convergence properties now follow
easily from Proposition 3.8. �

This proposition yields yet another evidence for the naturality of the bidiagonal
coordinates βπ

i .
The cubic convergence to deflation of the QR iteration with Rayleigh quotient

shift is well known ([14]); using bidiagonal coordinates, we deduce it from a Taylor
expansion. For s ∈ R, let fs(x) = x − s so that the QR step Fs : TΛ → TΛ is
defined for s /∈ σ(Λ). In other words, we have a map F : (R r σ(Λ)) × TΛ → TΛ,
F(s, T ) = Fs(T ). The map F cannot be continuously extended to R×TΛ; it follows
from Proposition 4.1, however, that F can be continuously extended to pairs (s, T )
if s = λi and the (possibly reduced) matrix T has the eigenvalue λi in the spectrum
of its bottom block. More formally, consider the set

DF = ((R r σ(Λ)) × TΛ) ∪

n
⋃

i=1



{λi} ×
⋃

π∈Sn,π(i)=n

Uπ
Λ



 ⊂ R × TΛ.

The set DF is open since points T ∈ {λπ(n)} × Uπ
Λ admit the explicit open neigh-

borhood (λπ
n − γ/2, λπ

n + γ/2)×Uπ
Λ ⊂ DF where γ = mini6=j |λi −λj | is the spectral

gap of Λ. The function F is defined in DF by

F(s, φπ(βπ
1 , . . . , β

π
n−1)) = φπ

(∣

∣

∣

∣

λπ
2 − s

λπ
1 − s

∣

∣

∣

∣

βπ
1 , . . . ,

∣

∣

∣

∣

λπ
n − s

λπ
n−1 − s

∣

∣

∣

∣

βπ
n−1

)

. (∗)

The QR iteration with Rayleigh quotient shift G : DG → TΛ is defined by G(T ) =
F((T )n,n, T ) where DG ⊆ TΛ is the open set {T ∈ TΛ | ((T )n,n, T ) ∈ DF}. Notice
that, from a numerical point of view, falling outside DG is an instant win: (T )n,n

is an eigenvalue.
The deflation set ∆0 ⊂ TΛ is the set of matrices T with (T )n,n−1 = 0. The set

∆0 is the disjoint union of the subsets ∆i
0 of matrices T ∈ ∆0 with (T )n,n = λi.

Notice that ∆i
0 is diffeomorphic to TΛî

where Λî = diag(λ1, . . . , λi−1, λi+1, . . . , λn)
and therefore a connected component of ∆0. Clearly, ∆0 ⊂ DG since Tn,n−1 = 0
and Tn,n = λπ

n imply that T ∈ Uπ
Λ . The (compact) deflation neighborhood ∆ǫ is the

set of matrices T ∈ TΛ with |(T )n,n−1| ≤ ǫ.
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Theorem 4.2 There exist ǫ > 0 and c > 0 such that ∆ǫ ⊂ DG, G(∆ǫ) ⊂ ∆ǫ and
for all T ∈ ∆ǫ we have |(G(T ))n,n−1| ≤ c |(T )n,n−1|

3.

Proof: Since the chart domains Uπ
Λ are open dense sets covering TΛ, there exist

compact sets Kπ ⊂ Uπ
Λ with

⋃

π∈Sn
Kπ = TΛ. Take Mπ > 0 such that ψπ(Kπ) is

contained in the box (−Mπ,Mπ)n−1: we then have

∆0 =
⋃

π∈Sn

φπ((−Mπ,Mπ)n−2 × {0}).

Equation (∗) above yields a formula for Gφπ : DGφπ → R
n−1 where DGφπ =

ψπ(DG ∩ Uπ
Λ) ⊆ R

n−1 is an open set with R
n−2 × {0} ⊂ DGφπ and

s = s(βπ
1 , . . . , β

π
n−1) = (φπ(βπ

1 , . . . , β
π
n−1))n,n.

For each π there exist ǫ′π > 0 such that, if A′
π = (−Mπ,Mπ)n−2 × (−ǫ′π, ǫ

′
π) then

(βπ
1 , . . . , β

π
n−1) ∈ A′

π implies |s − λπ
n| < γ/2 (where γ is the spectral gap) and

therefore A′
π ⊂ DGφπ . Due to the presence of absolute values, the function Gφπ is

almost certainly not smooth in A′. Set gπ : A′
π → R,

gπ(βπ
1 , . . . , β

π
n−1) =

λπ
n − s

|λπ
n−1 − s|

.

The function gπ is smooth and βπ
n−1 = 0 implies gπ(βπ

1 , . . . , β
π
n−1) = 0. Since g is

even (from Lemma 3.7), its first order partial derivatives at points with βπ
n−1 = 0

all vanish and the Taylor expansion for gπ at such points starts with terms of degree
2. By compactness of A′

π, there exists a constant cπ such that

gπ(βπ
1 , . . . , β

π
n−1) ≤ cπ(βπ

n−1)
2, |(Gφπ (βπ

1 , . . . , β
π
n−1))n−1| ≤ cπ|β

π
n−1|

3.

From Proposition 3.8, βπ
n−1 and (T )n,n−1 are comparable: there exists c̃π such that

T ∈ φπ(A′
π) implies

|(G(T ))n,n−1| ≤ c̃π|Tn,n−1|
3.

Take c = maxπ∈Sn
c̃π and ǫ > 0 such that ǫ < c−1/2 and ∆ǫ ⊂ A′. If T ∈ ∆ǫ we

therefore have |(G(T ))n,n−1| ≤ c|(T )n,n−1|
3 ≤ ǫ, proving the claims. �

5 Toda flows

Recall that the Toda flow ([6], [13], [4]) solves the differential equation

J ′(t) = [J(t),Πa(J(t))], J(0) = J0.

Here the bracket is the usual Lie bracket on matrices [A1, A2] = A1A2 −A2A1 and
Πa(M) is the skew-symmetric matrix having the same lower triangular entries as
M . As is well known, this flow preserves spectrum and the set J̄Λ. If w(t) is the
vector of norming constants for J(t), we have

w(t) =
exp(tΛ)w(0)

|| exp(tΛ)w(0)||
:

thus, up to normalization, the function w is the solution of a linear differential
equation. Taking quotients and using Proposition 3.6 shows that the evolution of
βπ

i is truly linear:
d

dt
βπ

i (t) = (λπ(i+1) − λπ(i))β
π
i (t).
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In other words, B′
π = [Bπ,−Λπ].

Clearly, the Toda flow is well defined in TΛ. Similar formulae hold for other
flows in the Toda hierarchy: for a function g, consider the differential equation
T ′ = [T,Πag(T )]; it turns out that, despite g(T ) not being tridiagonal, [T,Πag(T )]
is symmetric and tridiagonal. Integrate the differential equation to define T (t) for
all t ∈ R. In bidiagonal coordinates, it is easy to compute limits and asymptotics
of Toda flows.

Proposition 5.1 In π-bidiagonal coordinates, the equation T ′ = [T,Πag(T )] be-
comes a decoupled linear system: d

dtβ
π
i = (g(λπ

i+1) − g(λπ
i ))βπ

i . In particular, if
T (0) ∈ Uπ

Λ and g(λπ(1)) > g(λπ(2)) > · · · > g(λπ(n)) then limt→+∞ βπ
k (t) = 0, so

that limt→+∞ T (t) = Λπ with asymptotics

βπ
k (0) = lim

t→+∞
(T (t))k,k+1 exp

((

g(λπ(k)) − g(λπ(k+1))
)

t
)

.

Proof: The formula below follows by direct computation ([9], [12], [15], [16]):

T (t) = Q(exp(t g(T (0))))∗ T (0)Q(exp(t g(T (0)))),

or, in other words, τ(t) = F (T (0)) where f(x) = exp(t g(x)). From Proposition 4.1,

(βπ
1 (t), . . . , βπ

n−1(t)) =
(

e(g(λπ
2
)−g(λπ

1
))tβπ

1 (0), . . . , e(g(λπ
n)−g(λπ

n−1
))tβπ

n−1(0)
)

and the differential equation for βπ
i follows by taking derivatives. The last formula

is now a consequence of Proposition 3.8. �

As an application of the bidiagonal variables we consider the scattering prop-
erties of the Toda flow. From a more physical point of view, the Toda flow is the
evolution of n particles of mass 1 on the line given by the Hamiltonian

H(x, y) =

n
∑

k=1

y2
k

2
+

n−1
∑

k=1

exp(xk − xk+1),

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are respectively the positions and
velocities of the particles. Without loss of generality,

∑

k

xk(t) =
∑

k

yk(t) = 0.

More explicitly, positions and velocities satisfy the differential equation

x′k = Hyk
= yk, y′k = −Hxk

= exp(xk−1 − xk) − exp(xk − xk+1), k = 1, . . . , n,

where we take the formal boundary conditions x0 = −∞, xn+1 = ∞. The two
versions of the Toda flow are related by Flaschka’s transformation ([6]):

Jk,k = −
1

2
yk, Jk,k+1 =

1

2
exp

(

xk − xk+1

2

)

.

Notice that tr(J) = 0 for the Jacobi matrix J constructed from x and y.
We know that J(t) tends to Λπ± when t→ ±∞ where π− is the identity permu-

tation and π+ is the reversal π+(k) = n + 1 − k. The convergence of the diagonal
entries implies that the velocities yk(t) approach −2λπ±(k). From the convergence
to 0 of the off-diagonal entries, the force ± exp(xk − xk+1) between particles k and
k + 1 tends to 0 when t → ±∞. Thus, asymptotically, the particles undertake
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independent uniform motions of the form xk(t) ≈ c±k t+d±k when t→ ±∞. Clearly,
c±k = −2λπ±(k). The wave and scattering maps are

W±(x1(0), . . . , xn(0), y1(0), . . . , yn(0)) = (c±1 , . . . , c
±
n , d

±
1 , . . . , d

±
n ),

S(c−1 , . . . , c
−
n , d

−
1 , . . . , d

−
n ) = (c+1 , . . . , c

+
n , d

+
1 , . . . , d

+
n ),

respectively. They are related by S ◦W− = W+. Moser ([13]) proved that S is
indeed well defined and computed it. We obtain Moser’s result by first computing
wave maps in bidiagonal coordinates.

Proposition 5.2 Given initial conditions (x1(0), . . . , xn(0), y1(0), . . . , yn(0)) with
∑

xk(0) =
∑

yk(0) = 0, apply Flaschka’s transformation to obtain J(0) with
eigenvalues λ1 < · · · < λn and bidiagonal coordinates β

π±

k for π−(k) = k and
π+(k) = n+ 1 − k. Then

c±k = −2λπ±(k), d±k =
∑

j<k

−2j

n
β̃

π±

j +
∑

j≥k

2(n− j)

n
β̃

π±

j + (n− 2k + 1) log 2,

where β̃
π±

k = log β
π±

k . The scattering map is given by

c+n+1−k = c−k , d+
n+1−k = d−k + 2

∑

j<k

log |c−j − c−k | − 2
∑

j>k

log |c−j − c−k |.

Proof: From Proposition 5.1 with g(z) = z,

Jk,k+1 =
1

2
exp

(

xk − xk+1

2

)

≈ exp
(

(λπ±(k+1) − λπ±(k))t
)

β
π±

k

in the sense that quotients tend to 1 when t→ ±∞. Taking logs,

(xk − xk+1) − 2(λπ±(k+1) − λπ±(k))t ≈ (d±k − d±k+1) = 2β̃
π±

k + 2 log 2,

where now the difference goes to zero. Since
∑

k xk = 0, we have
∑

k d
±
k = 0 and

the formula for the wave operator follows.
Proposition 3.6 yields β̃+

k = −β̃−
n−k + δk where

δk =





∑

j>n−k

ǫn−k,j −
∑

j<n−k

ǫn−k,j



 −





∑

j>n+1−k

ǫn+1−k,j −
∑

j<n+1−k

ǫn+1−k,j





and ǫij = log
∣

∣λπ−(i) − λπ−(j)

∣

∣. Use this equation to write

d+
k = −





∑

j<k

−2j

n
β̃−

n−j +
∑

j≥k

2(n− j)

n
β̃−

n−j





+
∑

j<k

−2j

n
δj +

∑

j≥k

2(n− j)

n
δj + (n− 2k + 1) log 2.

Replacing k by r(k) = n+ 1 − k in the equation for d−k yields

d−n+1−k = −





∑

j<k

−2j

n
β̃−

n−j +
∑

j≥k

2(n− j)

n
β̃−

n−j



 − (n− 2k + 1) log 2

and therefore

d+
k = d−n+1−k +

∑

j<k

−2j

n
δj +

∑

j≥k

2(n− j)

n
δj + 2(n− 2k + 1) log 2.

The simplification yielding the scattering map is now an easy exercise. �
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