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Abstract

We define cut-and-paste, a construction which, given a quadriculated

disk obtains a disjoint union of quadriculated disks of smaller total area.

We provide two examples of the use of this procedure as a recursive step.

Tilings of a disk ∆ receive a parity : we construct a perfect or near-perfect

matching of tilings of opposite parities. Let B∆ be the black-to-white

adjacency matrix: we factor B∆ = LD̃U , where L and U are lower and

upper triangular matrices, D̃ is obtained from a larger identity matrix by

removing rows and columns and all entries of L, D̃ and U are equal to 0,

1 or −1.

1 Introduction

In this paper, a square is a topological disk with four privileged boundary points,
the vertices ; the boundary of the square consists of four edges. A quadriculated
disk ∆ is a closed topological disk formed by the juxtaposition along edges of
finitely many squares such that interior vertices belong to precisely four squares:
it may be considered as a closed subset of the plane R2 tiled by quadrilaterals.
A simple example is the n × m rectangle divided into unit squares, another is
shown in Figure 1.

Given ∆, we define the planar dual graph G∆: vertices of G∆ correspond to
squares in ∆ and two vertices of G∆ are adjacent if their corresponding squares
share an edge. Quadriculated disks are bi-colored: the squares are black and white
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Figure 1: A quadriculated disk, its dual graph and its black-to-white matrix

in a way that squares with a common edge have opposite colors (equivalently, G∆

is bipartite). Label the black (resp. white) squares of a quadriculated disk ∆ by
1, 2, . . . , b (resp. 1, 2, . . . , w). The b × w black-to-white (adjacency) matrix B∆

has (i, j) entry bij = 1 if the i-th black and j-th white squares share an edge and
bij = 0 otherwise. Figure 1 is an example of black-to-white matrix; black and
white squares are labeled by numbers and letters, respectively. Throughout the
paper, blank matrix entries equal 0. For a labeling in which black vertices come
first, the adjacency matrix of G∆ is

(

0 B∆

BT
∆ 0

)

.

The following result [1] indicates an unexpected spectral rigidity of B∆.

Theorem 1 Let ∆ be a quadriculated disk with b = w and black-to-white matrix
B∆. Then det(B∆) equals 0, 1 or −1.

This result admits a combinatorial interpretation. A domino tiling τ of ∆ is
a decomposition of ∆ as a union of dominos (i.e., 2 × 1 rectangles) with disjoint
interior. Let T∆ be the set of domino tilings of ∆. There is a natural parity
function on T∆ (see Section 4) and the determinant det(B∆) counts tilings with a
sign given by parity. The theorem above thus says that there exists a quasi-perfect
matching in T∆, i.e., a correspondence between even and odd tilings leaving out
at most one element of T∆, the loner. We provide a new, (quasi-) bijective proof
of Theorem 1 by constructing a quasi-perfect matching in the bipartite set T∆.

We extend Theorem 1 in a different, more algebraic, direction. A rectangular
matrix D̃ is a defective identity if it can be obtained from the identity matrix by
adding rows and columns of zeros. For a n×m matrix A, an LD̃U decomposition
of A is a factorization A = LD̃U where L (resp. U) is n×n (resp. m×m) lower
(resp. upper) invertible and D̃ is a defective identity.

Theorem 2 Let ∆ be a quadriculated disk with at least two squares. For an
appropriate labeling of its squares, the black-to-white matrix B∆ admits an LD̃U
decomposition whose factors have all entries equal to 0, 1 or −1.
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Thus, for example, the matrix B∆ in Figure 1 admits the decomposition
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Both the construction of the quasi-perfect matching and the proof of Theorem
2 use cut-and-paste, a recursive operation on quadriculated disks. A quadriculated
disk ∆ is cut along diagonals and pasted to obtain a disjoint union of smaller
disks ∆′

1, . . . , ∆
′

d, often with d = 1 (Lemma 3.1). Every nontrivial quadriculated
disk admits cut-and-paste (Proposition 2.3).

The proof of Theorem 2 relies on a procedure to convert LD̃U decompositions
of B∆′

1
, . . . , B∆′

d
into a similar decomposition of B∆ (Lemma 5.2). The proof

yields a fast algorithm to obtain the appropriate labeling of vertices, the matrices
in the factorization, det(B∆) and rank(B∆).

In Section 2 we present the facts about diagonals of quadriculated disks which
will be used in Section 3 to describe cut-and-paste. In Section 4 we construct the
quasi-perfect matching. The inductive step in the proof of Theorem 2, the al-
gebraic counterpart of cut-and-paste, is the main topic of Section 5. Finally, in
Section 6, we study boards, quadriculated disks which are subsets of the quadric-
ulated plane Z2 ⊂ R2; Theorem 3 states that cut-and-paste can be performed
within this smaller class.

Counting tilings with sign given by parity (as in Theorem 1) corresponds to the
case q = −1 of the q-counting of domino tilings with respect to height or volume as
in [7], [2] and [6]. In a similar vein, [5] extends Theorem 1 to quadriculated annuli
by introducing a polynomial which counts tilings with respect to yet another
integral parameter, the flux. It is not clear whether the cut-and-paste procedure
can be extended to take such parameters into account.

2 Diagonals

A corner of a quadriculated disk ∆ is a boundary point which is a vertex of
a single square. A pre-diagonal of length k > 0 of ∆ is a sequence of vertices
v0v1 . . . vk such that

(i) v0 is a corner, v1, v2, . . . , vk−1 are interior vertices;
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(ii) consecutive vertices vi and vi+1, i = 0, . . . , k − 1, are opposite vertices of a
square si+1/2;

(iii) consecutive squares si−1/2 and si+1/2, i = 1, . . . , k − 1, have a single vertex
in common (which is vi);

(iv) the vertices vi and the squares si+1/2, i = 0, . . . , k − 1, are distinct.

A diagonal is a maximal pre-diagonal (under inclusion). More geometrically,
we may think of a diagonal as a line ℓ = ℓ(v0, s1/2, v1, . . . , sk−1/2, vk) connect-
ing v0, the center of s1/2, v1, the center of s3/2 and so on up to vk. The
squares s1/2, . . . , sk−1/2 are the squares of the diagonal. Usually, the vertices
s1/2, . . . , sk−1/2 form a cut set of the dual graph G∆. Diagonals, being sequences
of vertices, are naturally oriented. Figure 2 shows examples of diagonals; vertices
and squares of δ1 are indicated.

δ1

δ2

δ3 δ4

δ5

δ6v0

v1

v2

s 1

2

s 3

2

Figure 2: A quadriculated disk and its six diagonals

Proposition 2.1 Given a corner v0 of ∆ there is a unique diagonal starting at
v0. Furthermore, all diagonals end at boundary points.

Proof: In principle, there are three types of diagonals: the vertex vk may coincide
with some vi, i < k (Figure 3, (a)), the square sk+1/2 may coincide with some
si+1/2, i < k (Figure 3, (b)) or vk may be a boundary vertex of ∆. Existence
and uniqueness of a diagonal δ starting at the corner v0 follows from finiteness.
The reader may check that self-intersection would happen at right angles, as
in the figure. Bicoloring of squares and vertices of ∆, as in Figure 3, yields a
contradiction in either case. �

Let δ be a diagonal of a quadriculated disk ∆ associated to the line ℓ =
ℓ(v0, s1/2, . . . , vk) ⊂ ∆. Given a vertex v of ∆ r ℓ, draw a smooth curve γ :
[0, 1] → ∆, γ(0) = v, γ(1) ∈ ℓ, γ(t) ∈ ∆ r ℓ for t < 1 and γ′(1) transversal to
ℓ. We say that v is to the left (resp. right) of δ if det(v1 − v0, γ

′(1)) is negative
(resp. positive). The existence of the curve γ follows from the fact that ∆ is path-
connected. A vertex v is not simultaneously to the left and right of δ: indeed,
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v0 v0

vk

vivi = vk

(a) (b)

Figure 3: Impossible diagonals

if γl, γr : [0, 1] → ∆ satisfy the hypothesis above and det(v1 − v0, γ
′

l(1)) < 0 <
det(v1 − v0, γ

′

r(1) then juxtaposition of γl and time-reversal of γr obtains a loop
which crosses ℓ exactly once, a contradiction.

In the next section we will use diagonals to cut-and-paste. Not all diagonals
are suitable for this construction. Call the two edges of sk−1/2 ending at vk

terminal edges. A diagonal v0 . . . vk is a good diagonal if at least one terminal
edge is contained in the boundary of ∆. In Figure 2, δ6 is the only bad diagonal.
A square has four diagonals, all good.

To prove the existence of good diagonals, we use a quadriculated version of
the Gauss-Bonnet theorem. Let V be the number of vertices of ∆ and write
V = VI +V1 +V2 + · · ·+Vr where VI counts interior vertices and Vr is the number
of boundary vertices belonging to exactly r squares. Notice that V1 is the number
of corners of ∆.

Lemma 2.2 V1 − V3 − 2V4 − · · · − (r − 2)Vr = 4.

Proof: Let E and F be the number of edges and faces (i.e., squares) of ∆.
Write E = EI + EB, where EI (resp. EB) counts interior (resp. boundary)
edges. Clearly, 4F = 2EI + EB = 2E − EB and therefore 4E = 8F + 2EB.
Also, 4F = 4VI + V1 + 2V2 + · · · + rVr = 4V − (3V1 + 2V2 + · · · + (4 − r)Vr)
and 4V = 4F + (3V1 + 2V2 + · · · + (4 − r)Vr). By Euler, 4V − 4E + 4F = 4.
Substituting the above formulas and using EB = V1 + V2 + · · · + Vr we have the
desired identity. �

Proposition 2.3 Any quadriculated disk ∆ admits at least four good diagonals.

Proof: Each vertex counted in V1 is a starting corner for a diagonal: we have to
prove that at least four of these V1 diagonals are good. Each vertex counted in
V3, for example, is the endpoint of at most three diagonals of which only one is
declared bad. More generally, we have at most V1−4 = V3 +2V4 + · · ·+(r−2)Vr

bad ends and we are done. �
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3 Geometric cut-and-paste

We are ready to perform cut-and-paste along a good diagonal. A good diagonal
v0 . . . vk is balanced if exactly one terminal edge is contained in the boundary of
∆. Diagonals δ1, δ2 and δ4 in Figure 2 are balanced; δ3 and δ5 are unbalanced.

In Figure 4 we illustrate the cut-and-paste procedure ∂δ on a quadriculated
disk ∆ and its dual graph G∆, where δ is an unbalanced diagonal. The operation
removes the shaded squares and identifies edges to obtain a new quadriculated
disk ∆′ = ∂δ(∆). Another choice of shaded squares for the same good diagonal δ
is indicated in the right and obtains the same quadriculated disk ∆′. In the left
(resp. right), squares C and D (resp. A and B) take over the space vacated by
A and B (resp. C and D).

D

C
1

2

3

A

BC

D

4

5

6

4

5

6

B

A
1

2

3

A

C

D

4

5

6

4

5

6

B

δδ
δ

∂δ∂δ ∂δ

Figure 4: Cut-and-paste along the unbalanced diagonal δ of length k = 3

The balanced case shown in Figure 5 is a little different. It turns out that a
similar construction with another choice of zig-zag is not appropriate for future
purposes.

1 A

D

6

2 B

4

5

C3E

4

5

D

E6

δ
δ

∂δ∂δ

Figure 5: Cut-and-paste along a balanced diagonal, k = 3

In the dual graph G∆, cut-and-paste removes the cut set of vertices (of the
graph) associated with squares of the diagonal δ and identifies vertices on both
sides: vertices left without partners at the end of an unbalanced diagonal are
also deleted. This point of view is more symmetric and does not require the
specification of zig-zags.
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Notice that the extreme vertex vk of a balanced diagonal may belong to more
than two squares, as in Figure 1. This is innocuous, as we shall see.

Cut-and-paste allows for recursive proofs and constructions in the class of
finite disjoint unions of quadriculated disks. As we shall prove in Lemma 3.1,
given a quadriculated square ∆ and a good diagonal δ, cut-and-paste obtains a
quadriculated region ∆̃′ which consists of quadriculated disks ∆′

1, . . . , ∆
′

d, possibly
joined by points. The process of passing from ∆̃′ to ∆′ = ∆′

1 ⊔ · · · ⊔ ∆′

d is called
detaching. Clearly, ∆′ has fewer squares than ∆. In the two previous examples,
d = 1; in Figure 6, d = 3.

10

10

A1 2

B 3 C

4 D 5 E 6

F 7 G

8 H 9 I 10

2B

4 D

F

8 H

6

2

F 6

8 H

B

4 D

Figure 6: Cut-and-paste may produce a disjoint union of disks

In a somewhat degenerate case, ∆′ = ∅ if and only if ∆ consists of one or two
squares. Also, if δ is an unbalanced diagonal of length k = 1, the quadriculated
disk ∆′ is obtained from ∆ by deleting two squares.

δ
δδ ∂δ∂δ∂δ

∅∅

Figure 7: Cut-and-paste in extreme situations

Lemma 3.1 Let ∆ be a quadriculated disk with a good diagonal δ of length k > 1.
Let ∆′ be obtained from ∆ by cut-and-paste along δ (and detaching): ∆′ is a
disjoint union of quadriculated disks.

We use a notation for vertices and squares near a good diagonal. Squares
immediately to the left (resp. right) of the diagonal are labelled sl

1, s
l
2, . . . (resp.

sr
1, s

r
2, . . .). Similarly, vertices to the left (resp. right) are labelled vl

1/2, v
l
3/2, . . .

(resp. vr
1/2, v

r
3/2, . . .). Thus, in Figure 4, sl

1 = A, sl
2 = B, sr

1 = C, sr
2 = D; in

Figure 5, sl
1 = A, sl

2 = B, sl
3 = C, sr

1 = D, sr
2 = E. The squares deleted in the cut-

and-paste construction (dashed in the figures) are s1/2, s
x
1 , s3/2, . . . , s

x
k−1, sk−1/2

and, in the balanced case, sx
k; here x = l or x = r. Let ∆r (resp. ∆l) be the



8 Quadriculated disks — April 29, 2009

closed regions to the right (resp. left) of the deleted squares. Attach ∆l to ∆r by
identifying edges in order to obtain a quadriculated region ∆̃′.

s 1

2

s 1

2

s 3

2

s 3

2

s 5

2

s 5

2

sl
1sl

1

sl
2sl

2

sl
3

sr
1sr

1

sr
2sr

2

∆l∆l

∆r∆r

δδ

ℓrℓr

(a) (b)

Figure 8: Notation for cut-and-paste; unbalanced and balanced cases

Proof: Assume without loss that cut-and-paste along δ deletes the squares
s1/2, s

l
1, . . . , s

l
k−1, sk−1/2 and, if δ is unbalanced, sl

k. We claim that ∆r is non-
empty, path-connected and simply connected. Indeed, the squares sr

1, . . . , s
r
k−1

exist (since v1, . . . , vk−1 are interior points, k > 1). To show that ∆r is path-
connected, it suffices to join by a path in ∆r any point x ∈ ∆r to the line
ℓr = (vr

1/2, s
r
1, . . . , s

r
k−1, v

r
k−1/2). Notice that the edges v0v

r
1/2 and vkv

r
k−1/2 are

in the boundary of ∆. If x ∈ ∆r lies between ℓ and ℓr then x belongs to one
of the squares sr

1, . . . , s
r
k−1 and the path is easy to construct. Otherwise, take

γ : [0, 1] → ∆ as in the definition of left and right of δ in Section 2; γ must
cross ℓr and a restriction of γ yields the required path. As to simple connectivity,
take a simple closed curve α contained in ∆r and therefore in ∆. By Jordan’s
Theorem, α encloses a disk A. Since ∆ is simply connected, A ⊂ ∆. Also, a path
in A from x ∈ A to α guarantees that x and α are on the same side of δ.

The region ∆l may be disconnected or even empty. On the other hand, the ar-
gument above shows that its connected components are simply connected. Thus,
∆̃′ is obtained by gluing the simply connected pieces ∆r and the components of
∆l: we must now study the gluing process. Let ζr and ζ l be the zig-zag lines
vr

1/2v1v
r
3/2 . . . vk−1v

r
k−1/2 and vl

1/2v
ll
1 vl

3/2 . . . vll
k−1v

l
k−1/2, where vll

i is the left-most

vertex of sl
i. Cut-and-paste obtains ∆̃′ by gluing ∆r and ∆l along ζr and ζ l.

Notice that ζr is contained in the boundary of ∆r. It is possible, however, that
parts of ζ l are part of the boundary of ∆ and not in ∆l.

We claim that, given a connected component D of ∆l, its intersection with ζ l is
either empty or path-connected. In other words, for any two points x0, x1 ∈ D∩ζ l,
the segment [x0, x1] ⊂ ζ l between x0 and x1 is contained in D. Indeed, there is
a curve α in D joining x0 and x1. Juxtaposition of α and [x0, x1] obtains a
closed curve in ∆. As before, simple connectivity of ∆ implies that the region
surrounded by this closed curve is contained in ∆ and therefore in ∆l and D,
completing the proof of the claim.
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The claims and Seifert-Van Kampen’s Theorem ([3]) imply that each con-
nected component of ∆̃′ is simply connected. Detaching guarantees that each
connected component of ∆′ is a simply connected surface with boundary — a
disk. �

4 A bijective proof of Theorem 1

A nonzero entry bij of the black-to-white matrix B∆ corresponds to a domino
contained in ∆: the indices i and j indicate the black and white squares in the
domino and bij 6= 0 when these two squares are adjacent. A domino tiling of ∆ is
a decomposition of ∆ as a union of dominos with disjoint interiors; let T∆ be the
set of all domino tilings of ∆. A nonzero monomial of the black-to-white matrix
B∆ corresponds to some τ ∈ T∆. Indeed, the dominos associated with the entries
cover ∆ and their interiors are disjoint. Equivalently, for a labeling of black and
white squares by {1, 2, . . . , b} and {1, 2, . . . , w}, we may consider a tiling τ as a
function π : {1, 2, . . . , w} → {1, 2, . . . , b} with π(j) = i if and only if the i-th
black square and the j-th white square form a domino in τ . With b = w, this
provides an identification between T∆ and a subset of the symmetric group Sw.

The above identification endows a tiling with parity (or sign). Tilings differing
by a flip (i.e., by exactly two dominos forming a 2 × 2 square) have opposite
parities: if their corresponding permutations are π1 and π2 then π−1

2 π1 is a cycle
of length 2, interchanging the two white squares in the flip. The combinatorial
interpretation of Theorem 1 is that the number of even and odd tilings in T∆

differ by at most 1. In this section we provide a bijective proof of this statement.

More precisely, we present an algorithm that, given a quadriculated disk ∆,
obtains a quasi-perfect matching in T∆, i.e., a subset T ∗

∆ ⊆ T∆ whose complement
has at most one element, the loner, and an involution ρ : T ∗

∆ → T ∗

∆ (i.e., ρ2(τ) =
τ) inverting parity. The argument proceeds by induction on the number of squares
of ∆. The construction of the quasi-perfect matching is trivial if ∆ has fewer than
4 squares.

In general, start with a quadriculated disk ∆ with b = w and take a good
diagonal δ as in Figure 9. Draw and number wedges along δ as in the figure;
a tiling respects a wedge if no domino in the tiling crosses a leg of the wedge.
We define a partition T∆ = D∆ ⊔ R∆: a tiling τ belongs to D∆ if and only if τ
disrespects at least one of the wedges along δ (see [4] for a similar construction
with a different purpose). The loner of the quasi-perfect matching, if it exists,
will belong to R∆; the sets D∆ and R∗

∆ = R∆ ∩ T ∗

∆ will be invariant by ρ.
Equivalently, deletion of the edges of G∆ crossing the wedges obtains a subgraph
GR

∆ : tilings in T∆ (resp. R∆) correspond to matchings in G∆ (resp. GR

∆ ).
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δ
δ

1

2

3

Figure 9: Wedges along a good diagonal and the subgraph GR

∆

We first construct the restriction ρ|D∆
. Given τ ∈ D∆, assume that the first

wedge to be disrespected is the k-th wedge. This means that the first 2×2 square
formed by dominos along δ is positioned around that wedge: ρ(τ) differs from τ
by a flip in that square.

There is a natural bijection ∂ : R∆ → T∆′ , where ∆′ is the disjoint union
of quadriculated disks obtained from ∆ by cut-and-paste along δ. Indeed, for
τ ∈ R∆, define ∂(τ) ∈ T∆′ by removing the dominos covering one of the squares
si+1/2 along δ and gluing the remaining parts. Given a quasi-perfect matching
ρ′ : T ∗

∆′ → T ∗

∆′ , define R∗

∆ = ∂−1(T ∗

∆′) and ρ(τ) = ∂−1(ρ′(∂(τ))).

∂ ∂

∂∂

ρ ρ′ ρ′′

Figure 10: The maps ∂ and ρ

If ∆′ is a quadriculated disk, a quasi-perfect matching is obtained by recursion.
Otherwise, for the detached collection

∆′ = ∆′

1 ⊔ · · · ⊔ ∆′

d, d > 1,

assume (again by recursion) that quasi-perfect matchings ρ′

i : T ∗

∆′

i

→ T ∗

∆′

i

have

been obtained for each ∆′

i (possibly with loners). For τ ′ ∈ T∆′ , let τ ′

i be the
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restriction of τ ′ to ∆′

i. In order to find ρ′(τ ′), search for the smallest i for which
τ ′

i ∈ T ∗

∆′

i

(i.e., τ ′

i is not a loner); construct ρ′(τ ′) by changing τ ′ in ∆′

i only:

ρ′(τ ′) = τ ′

1 ⊔ · · · ⊔ ρ′

i(τ
′

i) ⊔ · · · ⊔ τ ′

d.

A tiling remains unmatched if and only if its restriction to each ∆′

i is a loner:
since there is at most one loner in each T∆′

i
, there is at most one loner in T∆′ and

ρ′ is indeed a quasi-perfect matching.

If the diagonal δ is unbalanced then b′ 6= w′ and ∆′ admits no domino tilings.
Consistently, in this case, R∆ is empty: this follows from the impossibility of
respecting the last wedge. More generally, if ∆′ = ∆′

1 ⊔ · · · ⊔ ∆′

d and (at least)
one of the disks ∆′

i admits no domino tilings then R∆ is empty and we are done.

We must perform a final check: τ and ρ(τ) are supposed to have opposite
parities. This is clear for τ ∈ D∆; before we address the issue for τ ∈ R∆, we
present a few examples.

We follow the construction above in order to compute ρ(τ) where τ ∈ T∆

sits at the upper left hand corner of Figure 10. Recall that the definition of ρ
is dependent on a specific choice of good diagonal not only for the original disk
∆ but for every disk reached in the process. For δ as indicated, τ ∈ R∆. Take
τ ′ = ∂(τ) ∈ T∆′ and a good diagonal δ′ of ∆′. Again, τ ′ ∈ R∆′ so we must go to ∆′′

where τ ′′ = ∂(τ ′) ∈ D∆′′ . We construct ρ′′(τ ′′) ∈ T∆′′ (vertical arrow) and bring it
back to obtain ρ′(τ ′) = ∂−1(ρ′′(τ ′′)) ∈ R∆′ and finally ρ(τ) = ∂−1(ρ′(τ ′)) ∈ R∆.

In Figure 11, a loner is identified by a sequence of cut-and-paste operations
leading to a disk with a unique tiling. In Figure 12 we again compute ρ(τ) (τ
sits on the upper left corner); notice that there is a large region where domino
position is forced but the construction still applies.

∂∂ ∂

Figure 11: A loner

We recall some well known constructions. The superposition [τ1 − τ2] of two
tilings τ1 and τ2 consists of disjoint non-oriented simple closed curves of con-
secutive dominos (or edges) alternating between τ1 and τ2; dominos which are
common to τ1 and τ2 are discarded. Such curves are cycles (in a different sense)
in the dual graph G∆ but we reserve the word for permutation cycles. Consider
the bijections π1, π2 : {1, 2, . . . , w} → {1, 2, . . . , b} associated with the tilings
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∂

∂

∂∂

∂∂

ρ ρ′ ρ′′ ρ′′′

Figure 12: Matching tilings in a more degenerate situation

τ1, τ2 and decompose the permutation π−1
2 π1 ∈ Sw as a product of disjoint cycles.

These cycles correspond to the curves in [τ1 − τ2] and the length of each curve
(defined as the number of edges in G∆) is twice the length of the cycle. The
discarded dominos correspond to trivial cycles of length 1 and are irrelevant for
parity checks.

If τ1 and τ2 differ by a flip then [τ1 − τ2] is a single curve of length 4 and
π−1

2 π1 is a cycle of length 2. More generally, two tilings τ1, τ2 ∈ T∆ are compatible
if [τ1 − τ2] consists of a single curve whose length is a multiple of 4; we denote
compatibility by τ1 ↔ τ2. If τ1 ↔ τ2 then π−1

2 π1 is a cycle of even length, an odd
permutation, and τ1 and τ2 have opposite parities. We claim that, for τ1, τ2 ∈ R∆,

τ1 ↔ τ2 ⇐⇒ ∂(τ1) ↔ ∂(τ2).

By the inductive construction of ρ, the claim implies that τ1 ↔ ρ(τ1), completing
the parity check.

∂∂

Figure 13: Compatibility is preserved by cut-and-paste

Figure 13 provides two examples of [τ1 − τ2] and [∂(τ1) − ∂(τ2)] for tilings
τi ∈ R∆. The reader should check that in the first example, τ1 ↔ τ2 and ∂(τ1) ↔
∂(τ2); in the second, τ1 6↔ τ2 and ∂(τ1) 6↔ ∂(τ2). Some vertices of the dual graphs
G∆ and G∆′ are indicated for clarity.
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In general, decompose the curves forming [τ1 − τ2] into dashed segments
through corridors between wedges and solid segments on each side of the good
diagonal. Cut-and-paste deletes dashed segments and acts on solid segments by
translation. Thus, following solid segments yields a natural one-to-one corre-
spondence between curves in [τ1 − τ2] and curves in [∂(τ1)− ∂(τ2)]. Furthermore,
corresponding curves differ by the deletion of dashed segments of length 2, the
passages of the curve through corridors. Since at each such passage the curve goes
from one side of the diagonal to the other, the number of passages for each curve
is even. Thus, lengths of corresponding curves are congruent mod 4, proving
the claim and completing the proof.

5 Algebraic cut-and-paste

The bulk of this section is dedicated to relating the black-to-white matrices B∆

and B∆′ where ∆′ is obtained from ∆ by cut-and-paste (there is no difficulty
in defining black-to-white matrices for bicolored disjoint union of quadriculated
disks). More precisely, assume that ∆ (resp. ∆′) has b (resp. b′) black squares
and w (resp. w′) white squares. Let In be the n × n identity matrix and In,m

be the n × m defective identity matrix with (i, j) entry equal to 1 if i = j and 0
otherwise. We obtain in Lemma 5.2 a factorization

B∆ = L∆

(

Ib−b′,w−w′ 0
0 B∆′

)

U∆

where L∆ and U∆ are very special square triangular matrices. This factorization
is the inductive step in the proof of Theorem 2. We first present an example.

1 A

2 B

3 C

D4

5

6

7

E

F

G

8

9J

H

I

10

H 10

6 I

7

8 F

J 9 G

E 5

δ

Figure 14: Disks ∆ and ∆′
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The quadriculated disks shown in Figure 14 have black-to-white matrices

B∆ =

































1 1
1 1 1 1

1 1 1 1
1 1 1

1 1 1
1 1 1 1

1 1 1
1 1 1

1 1 1
1 1

































, B∆′ =

















1 1 1
1 1 1 1

1 1
1 1 1

1 1 1
1 1

















.

Rows and columns are indexed by numbers and letters respectively in Figure 14.
The first four rows and columns of B∆ correspond to the eight squares removed by
cut-and-paste. Partition B∆ in four blocks so that B11 = Bδ is the black-to-white
matrix of the disk around the diagonal δ consisting of squares 1, 2, 3, 4, A,B,C,D
and B22 is the bottom 6 × 6 principal minor. Notice that B22 and B∆′ are very
similar: the difference lies in the top 3× 3 principal minor of each matrix. These
positions describe adjacencies between squares 5, 6, 7 and E,F,G.

Elementary operations in rows and columns specified by

X̃ =

















0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

















, Ỹ =









1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0









can be applied to B∆ to obtain a block diagonal matrix

B∆ =

(

I4 0

X̃ I6

) (

Bδ 0

0 B̃∆′

) (

I4 Ỹ
0 I6

)

,

where

B̃∆′ =

















−1 −1 1
−1 −1 1 1

−1 1
1 1 1

1 1 1
1 1

















is surprisingly similar to B∆′ . More precisely, B̃∆′ = Sb′B∆Sw′ where Sb′ =
diag(−1,−1,−1, 1, 1,−1) and Sw′ = diag(1, 1, 1,−1,−1, 1). It is this “coinci-
dence” that allows for this construction to be used as the inductive step in the
proof of Theorem 2.
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Before discussing the relationship between B∆ and B∆′ we present a lemma
in linear algebra. The proof is a straightforward computation left to the reader.

Lemma 5.1 Decompose an (n + m) × (n′ + m′) matrix M as

M =

(

M11 M12

M21 M22

)

,

where M11 is n×n′. If n′ ≤ n and N is a n′×m′ matrix with M11N = M12 then

M =

(

M11In′,n 0
M21In′,n Im

) (

In,n′ 0
0 M22 − M21N

) (

In′ N
0 Im′

)

.

Similarly, if n′ ≥ n and N is a m × n matrix with NM11 = M21 then

M =

(

In 0
N Im

) (

In,n′ 0
0 M22 − NM12

) (

In′,nM11 In′,nM12

0 Im′

)

.

The next lemma is the inductive step in the proof of Theorem 2.

Lemma 5.2 Let ∆ be a quadriculated disk with b black and w white squares,
b+w > 1. Let ∆′ = ∆′

1⊔· · ·⊔∆′

d (with b′ = b′1+· · ·+b′d black and w′ = w′

1+· · ·+w′

d

white squares) be obtained from ∆ by cut-and-paste along a good diagonal δ. Label
black and white squares in ∆ so that removed squares come first, in the order
prescribed by the good diagonal; label squares in ∆′ next. Then the black-to-white
matrices B∆ and B∆′ satisfy

B∆ =

(

L 0
X Sb′

) (

Ib−b′,w−w′ 0
0 B∆′

) (

U Y
0 Sw′

)

where L (resp. U) is an invertible lower (resp. upper) square matrix of order
b− b′ (resp. w−w′) and Sb′ and Sw′ are square diagonal matrices. Furthermore,
all entries of Sb′, Sw′, L, U , X and Y equal 0, 1 or −1.

The statement above requires clarification in some degenerate cases. If ∆′ is
empty, B∆′ collapses and B∆ = LIb,wU . If instead ∆′ is a disjoint union of unit
squares, all of the same color, then either w′ = 0 or b′ = 0 and

B∆ =

(

L 0
X Sb′

) (

Ib−b′,w

0

)

U or B∆ = L
(

Ib,w−w′ 0
)

(

U Y
0 Sw′

)

.

Proof: Assume that the deleted squares are s1/2, s
l
1, . . . and that the square s1/2 is

black; thus k = b−b′; if s1/2 were white all computations would be transposed. Let
j1, . . . , jk−1 be the indices of the white squares sr

1, . . . , s
r
k−1; notice that ji > w−w′.

Decompose the matrix B∆ in four blocks,

B∆ =

(

B11 B12

B21 B22

)

,
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where B22 is a b′×w′ matrix. By construction, B11 has one of the two forms below,
the first case corresponding to balanced good diagonals (i.e., to b− b′ = w −w′).

B11 =



















1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
0 0 0 · · · 1 1



















, or B11 =



















1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 1



















.

Let Sb (resp. Sw) be a b× b (resp. w ×w) diagonal matrix with diagonal entries
equal to 1 or −1; the i-th entry of Sb (resp. Sw) is −1 if the i-th black (resp.
white) square is strictly to the right of δ. Write

Sb =

(

Ib−b′ 0
0 Sb′

)

, Sw =

(

Iw−w′ 0
0 Sw′

)

.

We have

SbB∆Sw =

(

B11 −B12

B21 B22

)

.

The nonzero entries of B12 are (i, ji) and (i+1, ji) for i = 1, . . . , k− 1. Thus, the
nonzero columns of B12 equal to the first k−1 columns of B11. Let N be the (w−
w′)×w′ matrix with entries 0 or −1, with nonzero entries at (1, j1), (2, j2), . . . , (k−
1, jk−1). Clearly B11N = −B12 and we may apply Lemma 5.1 to write

SbB∆Sw =

(

B11Iw−w′,b−b′ 0
B21Iw−w′,b−b′ Ib′

) (

Ib−b′,w−w′ 0
0 B22 − B21N

) (

Iw−w′ N
0 Iw′

)

.

We claim that B∆′ = B22 − B21N . The nonzero columns of the matrix −B21N
are the columns of B21, except that the first column is moved to position j1, the
second column is moved to j2 and so on. The k-th column of B21, if it exists,
is discarded. These nonzero entries correspond precisely to the identifications
which must be performed in order to obtain ∆′, i.e., to the ones which must be
added to B22 in order to obtain B∆′ . Clearing up signs,

B∆ =

(

B11Iw−w′,b−b′ 0
Sb′B21Iw−w′,b−b′ Sb′

) (

Ib−b′,w−w′ 0
0 B∆′

) (

Iw−w′ NSw′

0 Sw′

)

.

If the good diagonal is balanced, this finishes the proof. In the unbalanced case,
L̃ = B11Iw−w′,b−b′ is not invertible since its last column is zero. Replace the
(k, k) entry of L̃ by 1 to obtain a new matrix L: L is clearly invertible and
L̃Ib−b′,w−w′ = LIb−b′,w−w′ . The proof is now complete. �
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Proof of Theorem 2: The basis of the induction on the number of squares of
∆ consists of checking that the theorem holds for disks with at most two squares.
Notice that if the disk consists of a single square then b = 0 or w = 0 and the
matrices are degenerate.

Let ∆ be a quadriculated disk and ∆′ = ∆′

1 ⊔ · · · ⊔ ∆′

d be obtained from ∆
by cut-and-paste. By induction on the number of squares the theorem may be
assumed to hold for eack ∆′

k and we therefore write B∆′ = L∆′D̃∆′U∆′ . From the
induction step, Lemma 5.2, write

B∆ =

(

Lstep 0
Xstep Sb′

) (

Ib−b′,w−w′ 0
0 B∆′

) (

Ustep Ystep

0 Sw′

)

= L∆D̃∆U∆.

where

L∆ =

(

Lstep 0
Xstep Sb′

) (

Ib−b′ 0
0 L∆′

)

, U∆ =

(

Iw−w′ 0
0 U∆′

) (

Ustep Ystep

0 Sw′

)

.

The theorem now follows from observing that each nonzero entry of L∆ (resp.
U∆) is, up to sign, copied from either L∆′ , Lstep or Xstep (resp. U∆′ , Ustep or Ystep)
and is therefore equal to 1 or −1. �

We present a direct consequence of Theorem 2.

Corollary 5.3 Let ∆ be a quadriculated disk with black-to-white matrix B∆. If
v has integer entries and the system B∆x = v admits a rational solution then the
system admits an integer solution.

This corollary may be interpreted as saying that the co-kernel Zb/B∆(Zw) of
B∆ : Zw → Zb is a free abelian group. From Theorem 2, the rank r of B∆ is the
same in Q as in Zp for any prime number p. Notice that the proof of Theorem 1
in [1] is based on this fact for p = 2.

Figure 15: Determinant 1 does not imply LD̃U decomposition

The example in Figure 15 is instructive: the BG matrix of this planar graph
G has determinant 1 but admits no LD̃U decomposition where the matrices have
integer coefficients since the removal of any two vertices of opposite colors from
G yields a graph whose determinant has absolute value greater than 1.
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6 Boards

Topological subdisks of R2 consisting of unit squares with vertices in Z2 are
boards. In other words, a board is a topological subdisk of R2 whose boundary
is a polygonal curve consisting of segments of length 1 joining points in Z2. The
quadriculated disk in Figure 1 is not a board. The class of boards is not closed
under cut-and-paste: in Figure 16, the two enhanced segments on the boundary
would be superimposed by cut-and-paste along the good diagonal on the left.
Cut-and-paste along the good diagonal indicated on the right, however, yields
a smaller board. The main result of this section is that, given a board ∆, it is
always possible to choose a good diagonal δ such that ∆′ = ∂δ(∆) is a disjoint
union of boards.

Figure 16: A board and two good diagonals, one excellent.

Orient the boundary of a board ∆ counterclockwise, so that ∆ lies to the
left of the boundary. Consider boundary vertices which are local extrema for the
restriction of x + y to the boundary: as in Figure 17, call such vertices positive if
they are corners (equivalently, if they are local extrema for the restriction of x+y
to ∆) and negative otherwise. Let VB,+ (resp. VB,−) be the number of positive
(resp. negative) boundary vertices.

Positive Negative

Figure 17: Positive and negative boundary vertices

Lemma 6.1 VB,+ − VB,− = 2.

Proof: Define F , E, EI , EB and VI as in Lemma 2.2. The number of boundary
vertices is VB = VB,+ +VB,− +VB,0 where VB,0 is the number of boundary vertices
which are neither positive nor negative. For each square, consider its NW and SE
vertices: interior vertices and negative vertices are counted twice, positive vertices
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are not counted and other boundary vertices are counted once and therefore
2F = 2VI + 2VB,− + VB,0 = 2VI + VB − (VB,+ −VB,−). Recall that 4F = 2E −EB

(Lemma 2.2) and E = V + F − 1 (Euler) and therefore 2F = 2VI + VB − 2,
completing the proof. �

Theorem 3 It is always possible to cut-and-paste a given board ∆ to obtain a
disjoint union of boards ∆′.

Proof: A diagonal is excellent if the x and y coordinates are both monotonic
along one of the two boundary arcs between v0 and vk; without loss, let this arc
lie to the right of the diagonal. Excellent diagonals are good: the vertex vr

k−1/2

is on the boundary. We interpret cut-and-paste along an excellent diagonal as
leaving ∆l fixed and moving ∆r. In this way, ∆′ becomes a subset of ∆ and
is therefore a disjoint union of boards. We are left with proving that any board
admits excellent diagonals. Each diagonal defines two boundary arcs: order these
arcs by inclusion. We claim that a diagonal defining a minimal arc is excellent.

Let δm = (vm
0 vm

1 . . . vm
k ) be a diagonal inducing a minimal arc α: assume

without loss of generality that vm
i = (a + i, b + i) for integers a and b. Consider

the set ∆̃ (dashed in Figure 16) consisting of the squares totally or partially
surrounded by α and δm. It is easy to verify that ∆̃ is a legitimate board with
boundary consisting of α and ζ, where ζ is the zig-zag line next to δm. Thus,
the last edge of ζ can not overlap with α without contradicting the fact that the
boundary point vm

k of ∆ is surrounded by at most three squares in ∆.

By Lemma 6.1, the board ∆̃ has at least two positive boundary points. We
claim that the existence of a positive boundary point distinct from vm

0 and vm
k

contradicts minimality. Notice that at this point it is clear that vm
0 is positive;

the status of vm
k as a positive boundary point will only follow from the claim.

Indeed, such a positive point v̂ can not belong to the zig-zag line ζ and must
therefore belong to α. Draw a diagonal δ̂ starting at v̂: being parallel to ζ, δ̂
must intersect the boundary of ∆̃ in α and therefore defines a smaller arc α̂,
contradicting minimality and proving the claim. Again by Lemma 6.1, there are
no negative boundary vertices. In particular, there are no positive or negative
boundary vertices in α and we are done. �
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