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Theorem 1.2, page 142, is wrong as stated. We give a counterexample and
present a convenient hypothesis on the nonlinearity f under which the theorem and
its proof are correct. The hypothesis is satisfied by all examples in the rest of the
paper.

The proof of the last sentence of Lemma 3.5 is missing: “Also, Ŝk 6= ∅ implies
Sk 6= ∅.”.

About Theorem 1.2

We begin with a counterexample. Let f(t, u) = 2π cos(2πt) cosh2(u). Then there
are no periodic functions u for which u′(t) + f(t, u(t)) is constant. In particular,
the point 0 ∈ B0 is not in the image of the map Ψ constructed in Theorem 1.2.

Proof: The solutions of the equation u′(t) + f(t, u(t)) = 0 are

u = −arctanh (sin(2πt) + C) , C ∈ (−2, 2).

For C = 0, consider the solutions u− and u+ on disjoint domains (−1/4, 1/4) and
(1/4, 3/4). Notice that u− (resp. u+) is strictly decreasing (resp. increasing) with
absolute value tending to infinity at the endpoints of the domain.
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Figure 1: Solutions for C = 0 and C = ±0.3

The graph of any periodic function uν must cross the graphs of both u− and
u+ at times t− and t+, respectively, for which u′

ν(t−) + f(t−, uν(t−)) ≥ 0 and
u′

ν(t+) + f(t+, uν(t+)) ≤ 0. If u′
ν(t) + f(t, uν(t)) = ν for all t then, from the

conditions above, ν = 0. This, however, implies that uν must equal both u− and
u+, a contradiction. �
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A function f : S
1 × R → R is wild at +∞ (resp. −∞) if

∫

I

ds

max(1, supt∈S1 f(t, s))
< +∞,

∫

I

ds

max(1, supt∈S1(−f(t, s)))
< +∞

for I = [0,+∞) (resp. I = (−∞, 0]). We show that if f is tame (i.e., not wild at
±∞) then Theorem 1.2 and Lemma 1.3 hold, with the same proof. Furthermore,
autonomous functions (i.e., which do not depend on t), proper functions and func-
tions f which are non-decreasing in the second variable are all tame. This makes all
other arguments and statements in the paper correct as written. Loosely, f being
tame implies that a solution u can not go very far and come back in bounded time.

The offending sentence in the proof of Theorem 1.2 is “By continuous dependence
on parameters, both [ A+ and A− ] are closed” (page 143, lines 18 and 19): in the
above example A+ is an open half-line. Let f : S

1 × R → R, ṽ ∈ B0 ⊂ L1

and uν be the maximal solution of u′
ν(t) + f(t, uν(t)) = ṽ(t) + ν, uν(0) = c. Set

ν0 = supA− = inf A+: if ν0 ∈ A−∩A+ then uν0
is periodic. We show that ν0 /∈ A∓

implies that f is wild at ±∞. We consider the case ν0 /∈ A−.

Proof: If uν0
is defined in [0, 1] with uν0

(1) > c then continuous dependence
implies that some open neighborhood of ν0 is contained in A+, a contradiction.
Define tc ∈ (0, 1] by

lim
t→tc

uν0
(t) = +∞.

If tc = 1, continuous dependence again implies that ν0 is in the interior of A+; we
therefore have tc < 1. Thus, for every M ∈ R there exists ν < ν0 and tν > tc such
that uν(tc) > M , uν(tν) < c. Set

Iṽ = {t ∈ [0, tc] | − f(t, uν(t)) ≤ ṽ(t) + ν}.

For t ∈ Iṽ we have u′
ν(t) ≤ 2ṽ(t) + 2ν and the Lebesgue measure µ(uν(Iv)) is

bounded above by 2|ν| + 2||ṽ||L1 . Define h : [c,M ] → [0, tc] by h(s) = inf{t ∈
[0, tc] | uν(t) = s}. Even though h may have discontinuities, it is strictly increasing
and then, for almost all s, h is differentiable with h′(s) = 1/u′

ν(h(s)). Let Jf =
[c,M ] r uν(Iv): for s ∈ Jf , we have h(s) /∈ Iṽ and h′(s) ≥ −1/(2f(h(s), s)). Thus,

tc ≥ µ(h(Jf )) ≥

∫

Jf

h′(s)ds ≥
1

2

∫

Jf

ds

max(1, supt∈S1(−f(t, s)))

and therefore

∫ M

c

ds

max(1, supt∈S1(−f(t, s)))
≤ 2tc + 2|ν| + 2||ṽ||L1 .

Since this estimate holds for arbitrarily large M ,

∫ +∞

0

ds

max(1, supt∈S1(−f(t, s)))
< +∞.

A similar argument for the interval [tc, tν ] yields

∫ +∞

0

ds

max(1, supt∈S1(f(t, s)))
< +∞,

implying that f is wild at +∞. �
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About Lemma 3.5

Proof: Assume Ŝk 6= ∅. Following the notation of the proof of Lemma 3.5, use the
space V and the function φ to obtain r > 0 and a function H : B

k → B1 with

∫

γ̂k(H(s)(t))dt = rs

for s ∈ B
k where B

k ⊂ R
k is the unit ball.

Define the N -replicator to be the isomorphism RN : Bi → RN (Bi) ⊂ Bi,
(RN (u))(t) = u(Nt), i = 0, 1. Clearly, (RN (u))′ = NRN (u′). We claim that given
ǫ > 0 there exists N such that

∣

∣

(

wΦ(RN (H(s))), . . . , wkΦ(RN (H(s)))
)

− rs
∣

∣ < ǫ

for all s ∈ Bk and the proof is completed by a standard degree theory argument.
At this point it is convenient to make explicit the dependence of w = w(u) in

terms of u. From Proposition 1.1, λ =
∫

f ′(u(t))dt is the same for u and RN (u)
and we have

(w(RN (u)))′(t) + f ′(RN (u(t)))w(RN (u))(t) = λw(RN (u))(t).

Define wN (u) by RN (wN (u)) = w(RN (u)) so that

(wN (u))′(t) +
f ′(u(t))

N
wN (u)(t) =

λ

N
wN (u)(t)

and, from the formula for w in Proposition 1.1, wN (u)(t) = (w(u)(t))(1/N). Recall
that Φ(u) =

∫

f(u(t))dt and therefore Φ(RN (u)) = Φ(u) and

(

wΦ(RN (u)), . . . , wkΦ(RN (u))
)

=
(

wNΦ(u), . . . , wk
NΦ(u)

)

.

The sequence (wN ) of vector fields tends to the constant vector field 1 (i.e., the
constant function 1 at every point u) in the Cn-metric (for any n). Also,

(

1Φ(RN (u)), . . . ,1kΦ(RN (u))
)

=

∫

γ̂k(u(t))dt,

proving the claim. �

It also follows from the above argument that D((wΦ, . . . , wkΦ)◦RN ◦H) tends to
the identity matrix when N goes to infinity, establishing condition (c) in Proposition
2.1. Condition (b) follows from the additional hypothesis of f being (k + 1)-good,
thus proving the existence of Morin singularities of order k.
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