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Abstract

We study the critical set C of the nonlinear differential operator F (u) =
−u′′+f(u) defined on a Sobolev space of periodic functions Hp(S1), p ≥ 1.
Let R2

xy ⊂ R3 be the plane z = 0 and, for n > 0, let ⊲⊳n be the cone
x2 + y2 = tan2 z, |z − 2πn| < π/2; also set Σ = R2

xy ∪ ⋃n>0 ⊲⊳n. For
a generic smooth nonlinearity f : R → R with surjective derivative, we
show that there is a diffeomorphism between the pairs (Hp(S1), C) and
(R3, Σ)×H where H is a real separable infinite dimensional Hilbert space.

Keywords: Sturm-Liouville, Monodromy, Floquet matrix, Infinite-dimensional
manifolds with singularities.
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1 Introduction

A basic object in the study of a smooth nonlinear operator F : X → Y between
Banach spaces is its critical set C ⊂ X, the set of points u ∈ X for which
the derivative DF (x) is not a (bounded) linear isomorphism between X and Y .
For instance, knowledge of C and F (C) yields substantial information about the
number of solutions of the equation F (x) = b, b ∈ Y ([8], [10]). In this paper we
consider a special but relevant example, the nonlinear periodic Sturm-Liouville
operator and determine the topology of the pair (X, C) in the generic case.

More precisely, for a smooth nonlinearity f : R → R and p ≥ 1 denote by F
the differential operator

F : Hp(S1) → Hp−2(S1).

u 7→ −u′′ + f(u)

1
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Here S1 = R/2πZ and Hp(S1) is the Sobolev space of periodic functions u(t)
with square integrable p-th derivative. Clearly, DF (u) : Hp(S1) → Hp−2(S1) is
DF (u)v = −v′′ + f ′(u)v, a Fredholm operator of index 0. Thus, the critical set
C ⊂ Hp(S1) of F is

C = {u ∈ Hp(S1) | DF (u) has nontrivial kernel}.

In other words, u ∈ C if and only if the equation

−v′′ + f ′(u)v = 0, v(0) = v(2π), v′(0) = v′(2π)

admits a nonzero solution.

This paper continues the project of obtaining geometric understanding for
some nonlinear operators F : X → Y . The starting point might be located in a
fundamental result of Ambrosetti and Prodi ([2]; see also [1]). As interpreted by
Berger and Church ([3]), it states that, for appropriate nonlinearities, u 7→ −∆u+
f(u) acting on functions satisfying Dirichlet boundary conditions is a global fold.
Subsequently, a number of different operators were shown to be either global
folds or global cusps (see, among others, [7],[10]). Ideally, the description of the
critical set C should include its stratification into different kinds of singularities.

In many examples, C and its strata were shown to be topologically trivial.
Differential operators related to nonlinear Sturm-Liouville second order problems
F (u) = −u′′ + f(u) in finite intervals have very different critical sets depending
on the boundary conditions. For generic nonlinearities f , Dirichlet boundary
conditions give rise to a critical set C which is ambient diffeomorphic to a count-
able (possibly finite) union of parallel hyperplanes ([4], [5]). The situation is very
different for periodic boundary conditions.

We now describe the generic nonlinearities f for which our main result holds.
A smooth function g : R → R is nowhere flat if there exists a positive integer
r such that for all x ∈ R, there exists r′ = r′(x) ∈ Z, 0 < r′ ≤ r, such that
g(r′)(x) 6= 0. An admissible nonlinearity is a smooth function f : R → R such
that f ′ is surjective and nowhere flat and for all x0 ∈ R, if f ′(x0) = −n2, n ∈ Z,
then (f ′′(x0), f

′′′(x0)) 6= (0, 0). A good nonlinearity is an admissible nonlinearity
for which f ′(x0) = −n2, n ∈ Z, implies f ′′(x0) 6= 0. Most polynomials of even
degree are good nonlinearities.

Let R2
xy ⊂ R3 be the plane z = 0 and In = [2πn− π/2, 2πn+ π/2] for n ∈ Z,

n > 0. Let ⊲⊳n be the cone x2 + y2 = tan2 z, z ∈ In and Σ = R2
xy ∪

⋃

n>0 ⊲⊳n. The
real separable infinite dimensional Hilbert space will be denoted by H.

It turns out that the critical set C may include (at most countably many)
isolated points: let C∗ ⊆ C be obtained from C by removing such points.

Theorem 1 Let f : R → R be an admissible nonlinearity: the pair (Hp(S1), C∗)
is diffeomorphic to the pair (R3,Σ)× H; if f is a good nonlinearity then C∗ = C.
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The present paper can also be considered a continuation of [6], where Theorem
1 is proved for the linear case f(x) = x2/2: the phrasing is justified by the fact
that f ′(x) = x and therefore DF (u)v = −v′′ + uv. In this case we trivially have
C∗ = C. Notice that in the periodic case, unlike the Dirichlet case, the critical
set C has singular points and is not a Hilbert manifold. A model of C at singular
points is obtained by the study of the monodromy map. We now review the
notation and results used in [6] for the linear case, which will be heavily used in
this paper.

Let Π : G = ˜SL(2,R) → SL(2,R) be the universal cover of SL(2,R). The
elements of SL(2,R) and G will be referred to as matrices and lifted matrices,
respectively. Recall that G is itself a Lie group diffeomorphic to R3. For a
potential q ∈ Hp(S1), let v1, v2 ∈ Hp+2([0, 2π]) be the fundamental solutions

v′′i (t) = q(t)vi(t), v1(0) = 1, v′1(0) = 0, v2(0) = 0, v′2(0) = 1

and define the lifted fundamental matrix Φ̃ : [0, 2π] → G by Φ̃(0) = I and

Π(Φ̃(t)) =

(

v1(t) v2(t)
v′1(t) v′2(t)

)

.

The monodromy map µ : Hp(S1) → G is the lifting µ(q) = Φ̃(2π); the projection
Π(µ(q)) ∈ SL(2,R) is the so called Floquet multiplier associated to the potential
q. Notice that L1([0, 2π]) is another legitimate domain for µ.

It is easy to verify that u ∈ C if and only if µ(u) ∈ T2 ⊂ G where T2 is the
set of lifted matrices of trace equal to 2 (or, equivalently, with double eigenvalue
1); here tr(g) = tr(Π(g)) for a lifted matrix g ∈ G. The image of µ is an
open set G0 ⊂ G diffeomorphic to R3. Theorem 3 in [6] constructs an explicit
smooth diffeomorphism Ψ : G0 × H → Hp(S1) such that µ ◦ Ψ is the projection
on the first coordinate. It follows that (Hp(S1), C) is diffeomorphic via Ψ−1 to
(G0, T2 ∩G0) × H.

In the general case, we define the nonlinear monodromy map µf : Hp(S1) →
G0 by µf (u) = µ(f ′ ◦ u). Unlike µ, the map µf cannot in general be extended
to L1([0, 2π]) but L∞([0, 2π]) will be enough for the purposes of this paper. For
admissible nonlinearities f , it turns out that the image of µf equals G0 and we
still have that C = µ−1

f (T2 ∩G0). We shall not construct a counterpart of the dif-
feomorphism Ψ for the general nonlinearity: instead, we prove the contractibility
of fibers of µf and show that this information suffices to model C.

The local behavior of µf is particularly nasty at constant functions u; on
the other hand, such functions form a subspace of infinite codimension and can
therefore be excised without changing the homotopy type of the domain. Set
X∗ = Hp(S1)r{u constant}: as we shall see in Theorem 3, the map µf : X∗ → G0

is a surjective submersion with contractible fibers. In order to complete the proof
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of Theorem 1 we need some results in infinite dimensional topology. More pre-
cisely, we present in Theorem 4 a normal form near C, a Hilbert submanifold with
singularities: such singularities arise from the fact that T2 ⊂ G is diffeomorphic
to a countable union of cones.

As in [5], [9], [10], a key ingredient is the contractibility of level sets of certain
functionals defined on infinite dimensional spaces. The reader may see little in
common among the several proofs. A unifying feature is that we first construct
a fake homotopy and then fix it: it helps that the functional can actually be
extended to a larger infinite dimensional space with a weaker topology. Theorem
2 in [5], transcribed below, allows for moving from one space to another without
changing the homotopy type of level sets.

Theorem 2 Let X and Y be separable Banach spaces. Suppose i : Y → X
is a bounded, injective linear map with dense image and M ⊂ X is a smooth,
closed submanifold of finite codimension. Then N = i−1(M) is a smooth closed
submanifold of Y and the restrictions i : Y−N → X−M and i : (Y,N) → (X,M)
are homotopy equivalences.

Section 2 contains basic facts about the linear monodromy map µ, including a
study the effect of adding bumps ℓi to a potential q as controlled perturbations of
µ(q+

∑

aiℓi). In Section 3 we compute the derivative of the nonlinear monodromy
map µf and extend the results for bumps to this case. We also verify that
under rather general hypothesis on f the image of µf is G0, as in the linear case
(Proposition 3.6). The argument runs as follows: for g ∈ G0, we first obtain a
discontinuous u0 ∈ L∞ which is smoothened out yielding u1 with µf (u1) ≈ g; the
error is then corrected by adding appropriate bumps to u1. In Section 4 we prove
that level sets of µf in X∗ are contractible (Theorem 3) by construct homotopies:
we first obtain a fake homotopy by composing a homotopy for the linear case
with a (discontinuous!) right inverse for f ′. Smoothening and correction are
then similar to that in the proof of Proposition 3.6. Section 5 contains the
necessary results in infinite dimensional topology (including Theorem 4) which
take into account the presence of cone-like objects. The ingredients are combined
in Section 6 to complete the proof of Theorem 1; we express our thanks to S. Ferry
for providing first the arguments and afterwards directing us to the appropriate
reference [11] for what we call here Michael’s theorem (Fact 2).

The second and third authors received the support of CNPq, CAPES and
FAPERJ (Brazil). The second author acknowledges the kind hospitality of The
Mathematics Department of The Ohio State University during the winter quarter
of 2004.
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2 The monodromy map µ

We begin with a recollection of elementary facts about the second order ODE

v′′ = q(t)v and the universal cover Π : G = ˜SL(2,R) → SL(2,R). For details,
including a careful tracking of differentiability classes, see [6].

The left Iwasawa decomposition is the diffeomorphism φL : R×(0,∞)×R → G
given by φL(0, 1, 0) = I and

(Π ◦ φL)(θ, ρ, ν) =

(

cos θ sin θ
− sin θ cos θ

)(√
ρ 0

0 1/
√
ρ

)(

1 0
ν/2 1

)

.

The set G0 is defined by G0 = φL((0,+∞) × (0,+∞) × R) ⊂ G. Equivalently,
g ∈ G0 if and only if the variation in argument from e2 to ge2 is negative (the
variation in argument is computed along a path γ : [0, 1] → G joining γ(0) = I
to γ(1) = g). The pair (G0, T2 ∩ G0) is shown schematically in Figure 1. Here
T2 ⊂ G is the set of lifted matrices of trace equal to 2. The thick dashed curve
represents ∂G0, which is diffeomorphic to a plane; the X’s formed by crossing
curves stand for the connected components of T2, diffeomorphic to cones with
horizontal axis. The dotted vertical lines represent the set of lifted matrices of
trace 0 so that vertical regions contain matrices with trace of alternating sign.
The pair (R3,Σ) constructed in the introduction is diffeomorphic to (G0, T2∩G0):
Σ = R2

xy ∪ ⋃n>0 ⊲⊳n where R2
xy ⊂ R3 is the plane z = 0 and ⊲⊳n is the cone

x2 + y2 = tan2 z, |z − 2πn| < π/2.

∂G0

T2T2T2

Figure 1: The pair (G0, T2 ∩G0).

Given a potential q ∈ L∞([0, 2π]), let v1, v2 be the fundamental solutions

v′′i (t) = q(t)vi(t), v1(0) = 1, v′1(0) = 0, v2(0) = 0, v′2(0) = 1

and define the lifted fundamental matrix Φ̃ : [0, 2π] → G0 and its projection
Φ = Π ◦ Φ̃ by Φ̃(0) = I and

Φ(t) = Π(Φ̃(t)) =

(

v1(t) v2(t)
v′1(t) v′2(t)

)

.
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Let v : [0, 2π] → R2 be v(t) = (v1(t), v2(t)) so that

v′′(t) = q(t)v(t), v(0) = e1 = (1, 0), v′(0) = e2 = (0, 1).

The curve v never passes through the origin so its argument θ is well defined: it
is the only continuous function which satisfies

θ(0) = 0,
v(t)

||v(t)|| = (cos θ(t), sin θ(t)).

Since v(t)∧v′(t) = 1, the function θ : [0, 2π] → [0, θM ] is an increasing bijection.
Following [6], the orbit ρ : [0, θM ] → (0,+∞) associated to v is

ρ(θ(t)) = v2
1(t) + v2

2(t) = ||v(t)||2.

For ν(θ) = ρ′(θ)/ρ(θ), it turns out that φL(θ(t), ρ(θ(t)), ν(θ(t))) = Φ̃(t).

Conversely, given an orbit, i.e., a number θM > 0 and a function ρ : [0, θM ] →
(0,+∞) with ρ(0) = 1, ρ′(0) = 0 and

∫ θM

0
ρ(θ)dθ = 2π, consider the parametrized

curve
√

ρ(θ)(cos θ, sin θ). There is a unique orientation preserving reparametriza-
tion θ : [0, 2π] → [0, θM ] of the curve so that equal areas around the origin are
swept in equal times. In other words, the reparametrized curve

v(t) =
√

ρ(θ(t))(cos θ(t), sin θ(t))

satisfies v(t) ∧ v′(t) = 1 for all t. Taking derivatives, v(t) ∧ v′′(t) = 0 whence
v′′(t) = q(t)v(t) for some potential q : [0, 2π] → R. The correspondence between
potentials and orbits is called the Kepler transform in [6].

We now focus on the monodromy map µ : L∞([0, 2π]) → G0 given by µ(q) =
Φ̃(2π). Recall that g = sl(2,R) is the space of 2× 2 real matrices A = (aij) with
trA = 0. If g ∈ G and M ∈ Te(G) = g we write gM for the element in Tg(G)
obtained as the image of M by the differential of the translation g. Alternatively,
the natural identification Tg(G) = TΠ(g)(SL(2,R)) allows us to interpret gM as
the matrix product Π(g)M . For an angle ω ∈ R, define Nω ∈ g by

Nω =

(

− sinω cosω − sin2 ω
cos2 ω sinω cosω

)

=
1

2

(

− sin 2ω −1 + cos 2ω
1 + cos 2ω sin 2ω

)

;

notice that the matrices Nω form a circle in the plane a21 − a12 = 1.

Proposition 2.1 The monodromy map µ : L∞([0, 2π]) → G0 is smooth with
derivative given by

(Dµ(q))w = µ(q)

(
∫ 2π

0

w(t)ρ(θ(t))Nθ(t)dt

)

.

Furthermore, µ is uniformly continuous on bounded subsets of L∞([0, 2π]).
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Proof: The variation of the fundamental solutions vi with respect to the poten-
tial is a familiar computation (see [12]), as are expressions for higher derivatives.
The formula above for the derivative of the monodromy is then easy.

An alternative way of obtaining this formula is to (temporarily) allow for
potentials which are distributions. A straightforward computation yields

ρ(θ(t))Nθ(t) = (Φ(t))−1N0Φ(t) =

(

−v1(t)v2(t) −v2
2(t)

v2
1(t) v1(t)v2(t)

)

.

Thus, if δt0 is the Dirac delta centered at t0, 0 < t0 < 2π, it is easy to verify that

µ(q + aδt0) = µ(q)(Φ̃(t0))
−1

(

1 0
a 1

)

Φ̃(t0)

and therefore (Dµ(q))δt0 = µ(q)ρ(θ(t))Nθ(t).

Clearly, a potential q ∈ L∞ induces fundamental solutions, monodromy ma-
trices and functions θ and ρ which are bounded by simple expressions in |q|L∞ .
The formula obtains bounds for the derivative and therefore uniform continuity
on L∞-bounded sets. �

Assume p ≥ 1 so that Hp([0, 2π]) ⊂ C0([0, 2π]). The formula for Dµ in the
proof above implies the known fact that the functions v2

1, v1v2 and v2
2 are taken

by Dµ to a basis of Tµ(q)G, whence µ is a submersion. We need a more workable
triple of generators, however. A bump centered at t0 ∈ S1 is a smooth nonnegative
function from S1 to R whose support is a small interval centered at t0; the size of
the support is the width of the bump. Potentials will be altered by adding bumps
in order to adjust the value of µ.

Lemma 2.2 Let q ∈ Hp([0, 2π]) be a potential.

(a) Set ǫ−2 = |q|L∞. If 0 < t+ − t− < ǫ then θ(t−) < θ(t+) < θ(t−) + π.

(b) Let ℓi, i = 1, 2, 3, be bumps with disjoint supports contained in an interval
[t−, t+] with θ(t+) < θ(t−) + π. Then the vectors Dµ(q)ℓi, i = 1, 2, 3, are
linearly independent. In particular, µ : Hp([0, 2π]) → G0 and µ : Hp(S1) →
G0 are submersions.

Proof: With the hypothesis of item (a), let v be the solution of v(t−) =
0, v′(t−) = 1, v′′(t) = q(t)v(t); we claim that v′(t) > 0 for all t ∈ (t−, t+).
Assume by contradiction that tmax ≤ t+ is the first local maximum of v (after
t−) so that v′(tmax) = 0; set vmax = v(tmax). The maximum value of v′ in the
interval [t−, tmax] is at least vmax/ǫ and therefore there exists t in this interval with
v′′(t) < −vmax/(ǫ

2) and therefore v′′(t) = q(t)v(t) < −ǫ−2v(t) and |q(t)|L∞ > ǫ−2,
a contradiction.
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The claim implies the linear independence of the vectors (v(t−), v′(t−)) and
(v(t+), v′(t+)). Since v is in the linear span of v1 and v2, (v1(t

−), v2(t
−)) and

(v1(t
+), v2(t

+)) are not collinear, concluding the proof of item (a).

Let [t−i , t
+
i ] be the support of ℓi. Without loss of generality,

θ(t−) ≤ θ(t−1 ) < θ(t+1 ) < θ(t−2 ) < θ(t+2 ) < θ(t−3 ) < θ(t+3 ) ≤ θ(t+) < θ(t−) + π.

Note that θ(t) is strictly increasing in t. Write

(µ(q))−1(Dµ(q))ℓi =

∫ t+i

t−i

ℓi(t)ρ(θ(t))Nθ(t)dt =

∫ θ(t+i )

θ(t−i )

ℓi(θ
−1(τ))ρ(τ)

θ′(θ−1(τ))
Nτdτ.

Thus, up to a positive multiplicative factor, (µ(q))−1(Dµ(q))ℓi is a convex com-
bination of matrices Nτ in the arc from Nθ(t−i ) to Nθ(t+i ) and, in particular, lies in
the plane a21 − a12 = 1. Figure 2 illustrates that if we take a point in the convex
hull of each arc we necessarily form a non-degenerate triangle on this plane and
therefore the vectors (µ(q))−1(Dµ(q))ℓi are linearly independent. �

θ(t−1 )

θ(t+1 )

θ(t−2 )
θ(t+2 )

θ(t−3 )

θ(t+3 )

Figure 2: Convex hulls of three arcs

3 The nonlinear monodromy map µf

For a smooth nonlinearity f ∈ C∞(R,R) define the nonlinear monodromy map
µf : L∞([0, 2π]) → G0 by µf (u) = µ(f ′ ◦ u). We often consider restrictions of
µf to smaller spaces such as µf |Hp(S1), p ≥ 1. The critical set C of the operator
F : Hp(S1) → Hp−2(S1) defined by F (u) = −u′′ + f(u) is C = (µf |Hp(S1))

−1(T2 ∩
G0), where T2 ⊂ G is the set of lifted matrices with trace 2. More generally,
a real separable Banach space X is smoothing if the inclusions C∞(S1) ⊂ X ⊂
L∞([0, 2π]) are continuous.
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Proposition 3.1 Let f be a smooth nonlinearity.

(a) The map µf : L∞([0, 2π]) → G0 is smooth. Given u ∈ L∞(S1), define θ and
ρ as before for the potential f ′ ◦ u. Then, for any v ∈ L∞([0, 2π]),

(Dµf (u))v = µf (u)

(
∫ 2π

0

f ′′(u(t))v(t)ρ(θ(t))Nθ(t)dt

)

.

(b) Let X be a smoothing Banach space; assume f ′ nowhere flat. If u ∈ X is
not constant or is constant with f ′′(u) 6= 0, then the derivative D(µf |X)(u)
is a surjective linear map and µf |X is a local submersion at u. If u ∈ X is
constant which is a local extremum of f ′ then u is an isolated point in the
level set (µf |X)−1(µf (u)).

Proof: Item (a) follows directly from Proposition 2.1. The first case in item (b)
follows from item (a). From standard oscillation theory, if f ′(u1(t)) ≤ f ′(u2(t)),
u1 6= u2, then the arguments of either column of µf (u1) are respectively larger
than those of µf (u2). This implies the rest of (b), which alternatively follows
from a simple local argument using Proposition 2.1, left to the reader. �

If f ′′ and f ′′′ have no common zeroes then these cover all the possibilities
for u ∈ X. For flat f ′, more complicated scenarios might occur, including ac-
cumulations of isolated points in level sets (µf |X)−1(g). Constant functions u
are therefore potentially nasty objects: for a smoothing Banach space X, let
X∗ = X−{u = const.}: recall that X∗ is homeomorphic to the separable Hilbert
space H and diffeomorphic to H if X itself is Hilbert. Denote by λ the Lebesgue
measure in R.

Proposition 3.2 Let X be a smoothing Banach space and f : R → R be a
smooth function with nowhere flat derivative. Let u ∈ X and ℓi, i = 1, 2, 3, be
bump functions with disjoint supports contained in an interval I ⊂ (0, 2π) such
that f ′′(u(t)) 6= 0 for all t ∈ I. Then, for every E > 0 there exists ǫ > 0 such
that if |u|L∞ < E and λ(I) < ǫ then the vectors Dµf (u)ℓi, i = 1, 2, 3, are linearly
independent. Thus, the function µf : X∗ → G0 is a submersion.

Notice that we are not claiming (yet) that µf : X∗ → G0 is surjective: this is
Proposition 3.6.

Proof: Let E ′ be such that |x| < E implies |f ′(x)| < E ′ and take ǫ =
√

1/E ′.
We may assume without loss of generality that f ′′(u(t)) > 0 for all t ∈ I so that
ℓ̃i(t) = f ′′(u(t))ℓi(t), i = 1, 2, 3, are bump functions. From lemma 2.2, the three
vectors Dµ(f ′ ◦ u)ℓ̃i = Dµf (u)ℓi are linearly independent and we are done. �
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The following corollary generalizes the first part of Proposition 3.2; it will be
needed in the proof of Theorem 3.

Corollary 3.3 Let X ⊂ C0([0, 2π]) be a separable Banach space with continuous
inclusion such that the closure of X is either C0(S1) or C0([0, 2π]). Let f : R → R

be a smooth function with nowhere flat derivative. The function µf : X∗ → G0 is
a submersion.

Proof: We must prove thatDµf (u) : X → Tµf (u)G is surjective. By Proposition
3.2, Dµf (u)(C

0([0, 2π])) = Dµf (u)(C
0(S1)) = Tµf (u)G and the result follows by

density. �

The rest of the section is dedicated to showing in Proposition 3.6 that µf :
X → G0 is surjective for smoothing spaces X. Notice that the image of µf clearly
equals G0 if f ′ : R → R is a diffeomorphism. Indeed, given g ∈ G0 let q ∈ C∞(S1)
with µ(q) = g: the function u = (f ′)−1 ◦ q satisfies µf (u) = µ(f ′ ◦ u) = g.
Similarly, Theorem 1 follows easily from results in [6] if f ′ is a diffeomorphism.
The idea in the proofs of Proposition 3.6 and Theorem 3 is to first operate with
a discontinuous right inverse for f ′, then fix the discontinuities of the potential
and add bumps in order not to change the monodromy.

We call a function h : R → R piecewise smooth if there exists a discrete set Yh

such that if I is a connected component of R− Yh then there exists a continuous
function hI : I → R such that (hI)|I = h|I is smooth. Notice that an element
x ∈ Yh may be a discontinuity of h or a point where h is continuous but not
smooth, such as x = 0 for h(x) = x1/3. The proof of the following lemma is left
to the reader.

Lemma 3.4 If h : R → R is smooth, nowhere flat and surjective then there
exists a piecewise smooth function h♯ : R → R with (h ◦ h♯)(x) = x for all x.

Discontinuities in u0 = (f ′)♯ ◦ q will be handled by considering a smooth
function u1 such that |u1 −u0|L1 is small. In particular, µf (u1) is close to µf (u0):
adding appropriate bumps to u1 produces a smooth function u2 with µf (u2) =
µf (u0) = g.

Endow the Lie algebra g = sl(2,R) of G with an Euclidean metric and let
exp

g
: g → G be the exponential map: take ǫg > 0 to be such that the restriction

of exp
g

to the ball in g of center 0 and radius ǫg is injective. For ǫ ≤ ǫg, let
Bǫ ⊂ G be the image under exp

g
of the ball of center 0 and radius ǫ. The sets

Bǫ are invariant under inversion (h ∈ Bǫ if and only if h−1 ∈ Bǫ) but not under
conjugation: in general, Bǫ 6= h−1Bǫh. By continuity, given ǫ > 0, ǫ ≤ ǫg, there
exists δ > 0 such that BδBδ ⊆ Bǫ (i.e., if h1, h2 ∈ Bδ then h1h2 ∈ Bǫ).
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Lemma 3.5 Consider the monodromy µf : L∞([0, 2π]) → G0 for a smooth non-
linearity f : R → R. Then for all M ∈ R and for all ǫ > 0 there exists δ > 0
such that for all u1, u2 ∈ L∞([0, 2π])

|u1|L∞ , |u2|L∞ < M, λ({t|u1(t) 6= u2(t)}) < δ =⇒ µf (u2)(µf (u1))
−1 ∈ Bǫ.

Proof: Let M̃ = sup({|f ′(x)|, |x| < M}). Then |f ′ ◦ ui|L∞ < M̃ and the condi-
tion λ({t|u1(t) 6= u2(t)}) < δ implies |f ′◦u2−f ′◦u1|L1 < 2M̃δ. From Proposition
2.1, the monodromy map µ : L1([0, 2π]) → G0 is uniformly continuous with re-
spect to the L1 norm in the set {q ∈ L1([0, 2π]), |q|L∞ < M̃}, completing the
proof. �

It will be convenient to restrict the monodromy to intervals. For T = [t−, t+] ⊂
[0, 2π] and u ∈ L∞(T ), let Φ̃ : T → G be the only solution of

Φ̃(t−) = I, Φ̃′(t) =

(

0 1
f ′(u(t)) 0

)

Φ̃(t)

and define the T -variation µf,T (u) = Φ̃(t+). Variations juxtapose, and the
order is important: if t0 < t1 < t2 and u ∈ L∞([t0, t2]) then µf,[t0,t2](u) =
µf,[t1,t2](u)µf,[t0,t1](u). In particular, µf (u) = µf,T2

(u)µf,T1
(u).

Proposition 3.6 Let X be a smoothing Banach space and f : R → R be a
smooth function such that f ′ is nowhere flat and surjective. Then µf : X∗ → G0

is surjective.

Proof: Take g ∈ G0. For y0 a regular point of (f ′)♯, set x0 = (f ′)♯(y0) so that x0

is a regular point of f ′ and f ′(x0) = y0. From the Kepler transform construction,
outlined in the previous section, there exists ǫ1 > 0 and q ∈ C∞([0, 2π]) such
that µ(q) = g, q is nonflat in (ǫ1, 2π − ǫ1) and q is constant equal to y0 in
[0, ǫ1] ∪ [ǫ1, 2π]. Take u0 = (f ′)♯ ◦ q: clearly u0 ∈ L∞([0, 2π]), µf (u0) = g. The
function u0 is piecewise smooth: let T1 = [0, 2π − ǫ1], T2 = [2π − ǫ1, 2π] and
Y ⊂ T1 be the (discrete) set of discontinuities of u0. We need to alter u0 in an
open neighborhood Y̆ ⊃ Y , Y̆ ⊂ T1, and add bumps in T2 so as to obtain u2 ∈ X
with µf (u2) = g.

Let ℓi, i = 1, 2, 3, be bumps with disjoint supports contained in T2. From
Lemma 2.2 we may assume the linear independence of the vectors Dµ(q)ℓi and
therefore of the vectors Dµf,T2

(u0)ℓi. From the inverse function theorem, there
exists an open neighborhood B ⊂ G0 of µf,T1

(u0) such that for any h ∈ B there
exist ai, i = 1, 2, 3, which adjust the monodromy:

µf,T2

(

u0 +
∑

i=1,2,3

aiℓi

)

h = g.
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Let E = 2|u0|L∞ . Use Lemma 3.5 to obtain ǫ2 > 0 be such that

|u1|L∞ < 2E, λ({t ∈ T1|u0(t) 6= u1(t)}) < ǫ2 ⇒ µf,T1
(u1) ∈ B.

Choose an open neighborhood Y̆ ⊃ Y with Y̆ ⊂ T1 and λ(Y̆ ) < ǫ2. Let u1 be
an arbitrary smooth function coinciding with u0 in [0, 2π] r Y̆ , |u1|L∞ < 2E.
We have h = µf,T1

(u1) ∈ B and therefore there exist ai, i = 1, 2, 3, such that
u2 = u1 +

∑

aiℓi satisfies µf (u2) = g. �

4 Levels of generic µf are contractible

For the linear case, the levels sets of the monodromy map µ were explicitly
parametrized in [6]. Indeed, for a smoothing Banach spaceX, let LevX(g) ⊂ X be
the level set µ−1({g}), where µ : X → G0 ⊂ G is the monodromy map. Theorem
3 in [6] gives a diffeomorphism between LevX(g) and H forX = Hp([0, 2π]), p ≥ 0:
in particular, LevX(g) is contractible. In this section we generalize this last result:
let LevX

f (g) be the level set µ−1
f ({g}) ∩X∗ where X∗ = X − {u = const.}.

Theorem 3 Let X be a smoothing Banach (resp. Hilbert) space and f : R → R

be a smooth function such that f ′ is nowhere flat and surjective. Then for any
g ∈ G0 the level LevX

f (g) ⊂ X∗ is a nonempty contractible Banach (resp. Hilbert)
submanifold of codimension 3.

The fact that LevX
f (g) is a submanifold follows from Proposition 3.2. As

discussed in Proposition 3.1, the more natural level set µ−1
f ({g}) ⊂ X may not

be a Banach manifold at constants x for which f ′′(x) = 0. Removing such points
from µ−1

f ({g}) obtains a Banach manifold Lev0. Notice that in the definition

of LevX
f (g) we remove from µ−1

f ({g}) all constant functions so that LevX
f (g) ⊆

Lev0 ⊆ µ−1
f ({g}). The inclusion LevX

f (g) ⊆ Lev0 is a homotopy equivalence since
the two Banach manifolds differ by the excision of a subset of infinite codimension;
the set µ−1

f ({g}), on the other hand, may contain additional isolated points.

It might seem that different choices of X would demand different arguments.
Fortunately, this is not so: Theorem 2 from [5], transcribed in the introduction,
implies the homotopy equivalence of the spaces LevX

f (g) for different choices of

X. It is then sufficient to prove that all homotopy groups of LevX
f (g) are trivial.

For the standard monodromy map µ, i.e., for the linear case f(x) = x2/2, this

result is proved in [6]. Now, for X = H1(S1), given a loop γ : Sk → LevH1

f (g),
define γLin : Sk → H1(S1) by γLin(s) = f ′ ◦ γ(s) so that µ(γLin(s)) = g for
all s ∈ Sk. From [6], the loop γLin admits an extension ΓLin : Bk+1 → H1(S1)

with µ(ΓLin(s)) = g for all s ∈ Bk+1. In order to obtain Γ : Bk+1 → LevH1

f (g)
such that µf (Γ(s)) = g, we might want to define ΓLin(s) = f ′ ◦ Γ(s): such a
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construction will not respect H1(S1) if f ′ is not invertible. As in Proposition 3.6,
the idea of the proof is to use the piecewise smooth right inverse (f ′)♯ of f ′: we
must now regularize a family of discontinuous potentials without changing their
monodromies.

Proof of Theorem 3: For ǫ > 0, let Rǫ ⊂ C be the closed rectangle of
complex numbers z = a + bi, a ∈ [−ǫ, 2π + ǫ], b ∈ [−ǫ, ǫ] and let Aǫ be the set
of continuous functions f : Rǫ → C which are holomorphic in the interior of Rǫ

and which satisfy f(t) ∈ R for t ∈ [−ǫ, 2π + ǫ] and f(z + 2π) = f(z) whenever
z and z + 2π are in Rǫ. Clearly, the inclusion i : Aǫ → Hp(S1) is bounded and,
from Theorem 2 (with X = Hp(S1) and Y = Aǫ) and Corollary 3.3, we may
assume γ : Sk → LevAǫ

f (g). From the same theorem, it suffices to extend γ to

Γ : Bk+1 → Lev
C0(S1)
f (g).

Since γ(s) is analytic for all s, each γ(s) is nowhere flat. For a positive integer
r, a smooth function g : R → R is nowhere r-flat if, for all x ∈ R, there exists
r′ = r′(x) ∈ Z, 0 < r′ ≤ r, such that g(r′)(x) 6= 0. Continuity in the Aǫ norm
yields a uniform bound: there exists rγ such that each γ(s) is nowhere rγ-flat (this
is the reason we introduced the space Aǫ). Assume f ′ to be nowhere rf -flat; set

r = rγrf . Let γLin : Sk → LevCr(S1)(g) be defined by (γLin(s))(t) = f ′((γ(s))(t));
clearly, γLin(s) is nowhere r-flat for all s ∈ Sk. Again by Theorem 2, now setting
X = Cr(S1) and Y = Aǫ, there exists γAn : Sk → LevAǫ(g) arbitrarily close to γLin

and a homotopy ΓLin,An : [0, 1] × Sk → LevCr(S1) joining γLin and γAn. We may
furthermore assume that ΓLin,An(τ, s) is nowhere r-flat for all (τ, s) ∈ [0, 1] × Sk.
Since LevAǫ(g) is contractible there exists ΓAn : Bk+1 → LevAǫ(g) extending γAn.

Juxtapose ΓLin,An and ΓAn to define ΓLin : Bk+1 → LevCr(S1)(g) extending γLin:

ΓLin(s) =

{

ΓAn(2s), ||s|| ≤ 1/2,

ΓLin,An(2 − 2||s||, s/||s||), ||s|| ≥ 1/2;

notice that ΓLin(s) is nowhere flat for all s ∈ Bk+1. Define Γ̃Lin : Bk+1 × S1 → R

by Γ̃Lin(s, t) = (ΓLin(s))(t) (there will be similar correspondences between Γ1,
Γ2, Γ3 below and their counterparts Γ̃1, Γ̃2, Γ̃3; deformations are often easier to
describe from this second point of view).

Let (f ′)♯ be as in lemma 3.4. Let Γ̃1 : Bk+1 × S1 → R be the bounded
(possibly discontinuous) function (f ′)♯ ◦ Γ̃Lin: define Γ1 : Bk+1 → L∞([0, 2π]) by
(Γ1(s))(t) = Γ̃1(s, t). Notice that µf (Γ1(s)) = g for all s ∈ Bk+1 since

µf (Γ1(s)) = µ(f ′ ◦ Γ1(s)) = µ(ΓLin(s)) = g.

Let Y1 ⊂ Bk+1 × S1 be the set of discontinuities of Γ̃1. From nowhere-flatness, Y1

intersects circles (s, ·) in sets of measure zero; call this set Y1(s) ⊂ S1:

Y1(s) = ΠS1(Y1 ∩ ({s} × S1)).
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Recall that there may exist points where (f ′)♯ is continuous but not smooth:
at such points, Γ̃1 loses some differentiability but since our aim is to construct

Γ : Bk+1 → Lev
C0(S1)
f (g), this is not an issue and such points require no special

treatment. We modify Γ1 by adding a thick shell to its domain so that disconti-
nuities will stay away from the boundary of the domain. With the identification
S1 = R/(2πZ), set t0 = 0 ∈ S1; define

Γ̃2(s, t) =











Γ̃1(2s, t), if ||s|| ≤ 1/2,

Γ̃1(s/||s||, t), if ||s|| ≤ 1
2

+ 1
10
d(t, (Y1(s/||s||) ∪ {t0})),

γ(s/||s||, t), otherwise.

The three cases are indicated by I, II and III in the right side of Figure 3. The
function Γ̃2 is also discontinuous: let Y2 ⊂ Bk+1 × S1 be its set of discontinuities.
As for Y1, define Y2(s) ⊂ S1 to be the projection on S1 of the intersection of Y2

with the circle (s, ·); clearly, the measure of Y2(s) is zero for all s ∈ Bk+1. The
closed set Y2 keeps away from the boundary (it is contained in a ball of radius
0.85) and Γ̃2 is a (discontinuous) extension of γ̃. Notice that µf (Γ2(s)) = g for
all s since, for s ≤ 1/2, Γ2(s) = Γ1(2s) and, for s ≥ 1/2,

µf (Γ2(s)) = µ(f ′ ◦ Γ2(s)) = µ(γLin(s/||s||)) = g.

Assume |Γ̃2(s, t)| < E for all (s, t) ∈ Bk+1 × S1. We must regularize Γ̃2 with-
out changing the monodromy: at this point a sketch of what comes ahead is
appropriate.

II
I

III

III

II

Figure 3: The sets of discontinuities Y1 and Y2 of Γ1 and Γ2 (here, k = 0).

We will take an open set Y̆2 ⊂ Bk+1 × S1, Y2 ⊂ Y̆2 far from the boundary
(i.e., (s, t) ∈ Y̆2 implies ||s|| < 9/10) and within it Γ̃2 will be altered to obtain a
continuous function Γ̃3 with |Γ̃3(s, t)| < 2E for all (s, t) ∈ Bk+1 × S1. Notice that
Γ3 extends the original loop γ continuously but has slightly wrong values for the
monodromy in the interior.
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The monodromy of Γ3 will be corrected with bumps roughly as done in Propo-
sition 3.6: in this parametrized version, however, we have to find places to support
the bumps (the shaded boxes in Figure 4) and coordinate their effect. More pre-
cisely, set Zt = {s ∈ Bk+1 | (s, t) 6∈ Y2, f

′′(Γ̃2(s, t)) 6= 0} for t ∈ (0, 2π). The sets
Zt form an open cover of the compact ball Bk+1. Let J = {1, 2, . . . , jmax} be a
finite index set such that the sets Ztj cover Bk+1. Let K̆j ⊂ Kj ⊂ Ztj be such

that Kj is compact and the sets K̆j form an open cover of Bk+1. Let ǫ0 > 0 be
such that the sets Kj × [tj − ǫ0, tj + ǫ0] ⊂ Bk+1 × S1, j ∈ J , are pairwise disjoint,
disjoint from Y2 and disjoint from the set of pairs (s, t) for which f ′′(Γ̃2(s, t)) = 0.
Assume furthermore that ǫ0 < ǫ, where ǫ is given by Proposition 3.2. The sets
Kj ×Tj, Tj = [tj − ǫ0, tj + ǫ0], are shown schematically in Figure 4. In the figure,
the dotted radii are the sets Bk+1 ×{tj}, the two thick circles form the boundary
Sk × S1 of Bk+1 × S1, the wiggly curve is Y2 and the shaded boxes are Kj × Tj:

notice that the interiors K̆j indeed form an open cover in the figure.

Figure 4: The sets Kj × Tj ⊂ Bk+1 × S1 avoid Y2 (here, k = 0).

We must first choose the bumps ℓji : we will have

Γ(s) = Γ3(s) +
∑

i=1,2,3; j∈J

aj
i (s)ℓ

j
i

where aj
i : Bk+1 → R are continuous functions with support contained in Kj. We

next measure their capacity of correcting the monodromy. Only then we choose
Y̆2 so thin that Lemma 3.5 implies that the monodromy of Γ3(s) is so close to g
that it can be fixed to obtain Γ with the formula above.

Before proceeding we must clarify how the implicit function theorem accounts
for the capacity of a given triple of bumps to adjust monodromy. As in Proposi-
tion 3.6, we use the T -variation µf,T . For u ∈ L∞([0, 2π]) and 0 < t− < t+ < 2π,
set T− = [0, t−], T0 = [t−, t+], T+ = [t+, 2π], h− = µf,T−

(u), h0 = µf,T0
(u)

and h+ = µf,T+
(u): we have µf (u) = µf,[0,2π](u) = h+h0h−. Now suppose

that ℓi, i = 1, 2, 3, are bumps supported in T0 and consider ũ = u +
∑

i aiℓi:
then µf (ũ) = h+µf,T0

(ũ)h−. We compare monodromies of u and ũ by writing
µf,T0

(ũ) = ψµf,T0
(u), which is equivalent to ψ = (h+)−1µf (ũ)(µf (u))

−1h+.
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Claim: LetK ⊂ Bk+1 be a compact set and T = [t−, t+] ⊂ (0, 2π). AssumeK×T
to be disjoint from Y2 and that (s, t) ∈ K × T implies f ′′(Γ̃2(s, t)) 6= 0. Assume
also that t+ − t− < ǫ, where ǫ is given in Proposition 3.2. Let ℓi, i = 1, 2, 3, be
bumps with disjoint supports contained in T with |ℓi|L∞ < 1. Then there exists
ǫ̃ > 0 such that, for all continuous functions ψ : K → Bǫ̃ ⊂ G with ψ(s) = I
for s ∈ ∂K there are continuous functions ai : K → [−E,E], i = 1, 2, 3, with
ai(s) = 0 for s ∈ ∂K for which

µf,T

(

Γ2(s) +
∑

i=1,2,3

ai(s)ℓi

)

= ψ(s)µf,T (Γ2(s)).

Proof of claim: Define ζ : K × R3 → G by

ζ(s, a1, a2, a3) = µf,T

(

Γ2(s) +
∑

i

aiℓi

)

(µf,T (Γ2(s)))
−1.

Clearly ζ(s, 0, 0, 0) = I for all s ∈ K. From Proposition 3.2, the three vectors
∂ζj/∂ai are linearly independent. From the implicit function theorem, there
exists ǫ̃ > 0 and a continuous function α : K × Bǫ̃ → R3 with α(s, I) = 0 and
ζ(s, α(s, h)) = h for all s ∈ Kj and h ∈ Bǫ̃. We can furthermore assume without
loss of generality that ||α(s, h)|| < E for all s ∈ K and h ∈ Bǫ̃. Now take
(a1(s), a2(s), a3(s)) = α(s, ψ(s)), completing the proof of the claim. �

We now put the partial results to work: for each j ∈ J , construct bumps
ℓj1, ℓ

j
2, ℓ

j
3 with support contained in Tj and |ℓji |L∞ < 1. Apply the claim to Kj, Tj

and ℓji to obtain ǫ̃j; let ǫ1 be the minimum among all ǫ̃j, j ∈ J . The set of all
Φ̃(t) where

Φ̃(0) = I, Φ̃′(t) =

(

0 1
f ′(u(t)) 0

)

Φ̃(t), t ∈ [0, 2π], |u|L∞(S1) < 2E,

is contained in a compact set K ′ ⊂ G. Let ǫ′2 > 0 be such that

Bǫ′
2
⊆
⋂

h∈K′

h−1Bǫ1h

and ǫ2 > 0 such that Bǫ2Bǫ2 ⊆ Bǫ′
2
. From Lemma 3.5, let ǫ3 > 0 be such that

|u0|L∞ , |u1|L∞ < 2E, λ({t|u0(t) 6= u1(t)}) < ǫ3 ⇒ µf (u0)(µf (u1))
−1 ∈ Bǫ2 .

Select an open set Y̆2 ⊂ Bk+1 × S1, Y2 ⊂ Y̆2, which is removed from the
boundary and satisfies λ(Y̆2(s)) < ǫ3 for all s ∈ Bk+1 where, as before,

Y̆2(s) = ΠS1

(

Y̆2 ∩ ({s} × S1)
)

.
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Define a continuous function Γ̃3 with |Γ̃3(s, t)| < 2E for all s, t and a correspond-
ing Γ3 : Bk+1 → C0(S1) coinciding with Γ̃2 outside Y̆2 (and otherwise arbitrary
in Y̆2). From the construction of ǫ3, we have µf (Γ3(s))g

−1 ∈ Bǫ2 for all s (recall
that µf (Γ2(s)) = g).

We will define inductively in j the functions aj
i and

Γ4,j(s) = Γ4,j−1(s) +
∑

i=1,2,3

aj
i (s)ℓ

j
i , Γ4,0 = Γ3;

notice that Γ4,jmax
= Γ. The idea is that we activate one Kj × Tj box at a time.

Recall that exp
g

: g → G is the exponential map. Let v0 : Bk+1 → g be
defined by µf (Γ3(s))g

−1 = exp
g
(v0(s)); the function v0 provides a linear measure

for the error in the monodromy of Γ3: we now construct intermediate functions
vj : Bk+1 → g with vjmax

= 0 and functions Γ4,j with µf (Γ4,j(s))g
−1 = exp

g
(vj(s)).

Let rj : Bk+1 → [0, 1] be a smooth partition of unity associated to the partition

K̆j, so that
∑

j rj = 1 and the support of rj is contained in K̆j. Set

vj(s) =

(

∑

j′>j

rj′(s)

)

v0(s);

notice that vj(s) = vj−1(s) for s /∈ K̆j. Define inductively in j the functions aj
i

so that

Γ4,j(s) = Γ4,j−1(s) +
∑

i=1,2,3

aj
i (s)ℓ

j
i , Γ4,0 = Γ3, µf (Γ4,j(s))g

−1 = exp
g
(vj(s)) :

then set Γ4,jmax
= Γ. We are left with showing that this is indeed possible, i.e.,

that the functions aj
i are continuous and well defined.

Assume that Γ4,j−1 has been constructed, in other words, the functions aj′

i

have been obtained for j′ < j and we have µf (Γ4,j−1(s))g
−1 = exp

g
(vj−1(s)). We

need functions aj
i such that

µf

(

Γ4,j−1(s) +
∑

i=1,2,3

aj
i (s)ℓ

j
i

)

g−1 = exp
g
(vj(s)).

Notice that aj
i (s) = 0 for s 6∈ Kj, as required. For s ∈ Kj and Tj = [t−j , t

+
j ], set

h−(s) = µf,[0,t−j ](Γ4,j−1(s)), h0(s) = µf,Tj
(Γ4,j−1(s)), h+(s) = µf,[t+j ,2π](Γ4,j−1(s))

so that
h+(s)h0(s)h−(s) = µf (Γ4,j−1) = exp

g
(vj−1(s))g.

Define ψj : Bk+1 → G so that h+(s)ψj(s)h0(s)h−(s) = exp
g
(vj(s))g; in other

words,
ψj(s) = (h+(s))−1 exp

g
(vj(s)) exp

g
(−vj−1(s))h+(s).

By construction, h+(s) ∈ K ′ ⊂ G and exp
g
(vj(s)), exp

g
(−vj−1(s)) ∈ Bǫ2 whence

exp
g
(vj(s)) exp

g
(−vj−1(s)) ∈ Bǫ′

2
, so that ψj(s) ∈ Bǫ1 . Apply the claim to Kj,

Tj, ℓ
j
i and ψj to obtain aj

i and we are done. �
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5 Hilbert manifolds with cone-like singularities

In this section we obtain normal forms near the critical set C. We first consider
a simple scenario. Recall that ⊲⊳ ⊂ R3 is the cone x2 + y2 − z2 = 0 with vertex
0 ∈ R3.

Theorem 4 Let H be an infinite dimensional smooth Hilbert manifold and σ :
H → R3 a smooth surjective submersion with contractible fibers. Set C1 = σ−1(⊲⊳)
and C2 = σ−1({0}). Then there exists a diffeomorphism

θ : (H, C1, C2) → (R3, ⊲⊳, {0}) × H.

The proof will be organized in two steps which are stated now and justified
later. For a manifold with boundary X (of finite or infinite dimension), we write
intX for its interior and ∂X for its boundary.

Step 1 There is a closed tubular neighborhood D ⊂ H of the smooth submanifold
C2 and a diffeomorphism θ1 : (D, ∂D) → (D1, ∂D1)×C2 satisfying θ1(C2) = 0×C2

and θ1(D ∩ C1) = (D1∩ ⊲⊳) × C2.

Here Dr denotes the closed disk (or ball) of radius r in R3 centered at the
origin. Recall that a tubular neighborhood D is the image by an embedding of
the unit disk bundle, a subset of the normal bundle of C2 in H, ν : D → C2,
which, in this case, is trivial since C2 is contractible. The fibers of ν : D → C2

can be identified to the unit disk in R3, and therefore ν can be identified to
Π1 : C2 × D1 → C2, where Π1 is the projection on the first coordinate. Note
that D is a (codimension zero) smooth submanifold with boundary, ∂D being
diffeomorphic to C2 × S2.

Since σ is a submersion and, for D satisfying Step 1, ⊲⊳ is transversal to ∂D1,
we have that C1 is also transversal to ∂D. We then consider the smooth Hilbert
manifold with boundary V = H r intD. The subset K = C1 r intD is a codi-
mension 1 submanifold with boundary which intersects ∂V = ∂D transversally.

Step 2 There is a diffeomorphism θ2 : (V , ∂V) → (R3 r intD1, ∂D1) × C2 with
θ2(K) = (⊲⊳ r intD1) × C2.

We may furthermore assume that θ1 and θ2, given by Steps 1 and 2, coincide
on ∂V = ∂D. Indeed, start with θ1 given by Step 1; in order to define θ2 we first
set θ2|∂V = θ1|∂V , θ2|∂V : (∂V , ∂V ∩ C1) → (∂D1, ∂D1∩ ⊲⊳) × C2.

From Step 2 and the identification between (R3 r intD1, ⊲⊳ r intD1) and
(∂D1, ⊲⊳ ∩ ∂D1) × [1,∞), extend this restriction to obtain the desired diffeo-
morphism θ2. Combining such θ1 and θ2, and in view of the fact that C2 is
diffeomorphic to H, one obtains Theorem 4.

We need a few additional notations and observations. For a positive smooth
function ǫ : C2 → R+, we denote by (C2 × D)ǫ = {(p, v) | ||v|| ≤ ǫ(p)}. Let
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Π1 : (C2 × D)ǫ → C2 be the first factor projection, whose fiber above p ∈ C2

is p × D
ǫ(p). Note that if ǫ is a smooth function then (C2 × D)ǫ is a smooth

Hilbert manifold with boundary and one can produce a fiber diffeomorphism
θǫ : (C2 × D)ǫ → (C2 × D)1 where 1 denotes the constant function and the
diffeomorphism keeps the first coordinate fixed.

To accomplish Step 1, we use a smooth closed tubular neighborhood ω :
(C2 ×D)ǫ → H, where ǫ : C2 → R+ is a smooth function so that the composition
σ ◦ ω, when restricted to the fibers p×D

ǫ(p) is a diffeomorphism onto its image.
Clearly, for such ω, (σ ◦ω,Π1) : (C2×D)ǫ → R3×C2 is a diffeomorphism onto the
image. To construct such pair (ω, ǫ), we choose ω0 : C2×R3 → T (H)|C2

, a splitting
of the surjective bundle map Dσ : T (H)|C2

→ C∗
2(T (R3))|C2

= C2×R3, fixing base
point, for which Dσ ◦ ω0 = id. Such splitting exists since σ is a submersion. We
choose a complete Riemannian metric on H and use the exponential map with
respect to this metric to define the smooth map e : C2 × R3 → H (we regard
C2 × R3 as the total space of the normal bundle of C2 in H). The differential of
e at any point of C2 × 0 (the zero section of the trivial bundle C2 × R3 → C2) is
an isomorphism and therefore there exists ǫ1 : C2 → R+ so that e restricted to
(C2 ×D)(ǫ1) is a diffeomorphism onto its image. Since the differential at zero of
σ ◦ e when restricted to any fiber of p× R3 → C2 is an isomorphism, one obtains
ǫ2 : C2 → R+ so that σ ◦e, when restricted to the disk D

ǫ2(p), is a diffeomorphism
on the image. Choose ǫ ≤ min(ǫ1, ǫ2) but still smooth and positive, and take ω
the restriction of e to (C2 ×D)ǫ, thus completing the proof of Step 1.

For Step 2, we need a few preliminary results. We begin with an easy conse-
quence of item 1 of Proposition 3.1 in [5].

Lemma 5.1 Suppose (V , ∂V) is a Hilbert manifold with boundary and that the
inclusion ∂V →֒ V is a homotopy equivalence. Then there exists a diffeomorphism
θ : (V , ∂V) → (∂V × [1,∞), ∂V × {1}).

We now use this lemma to prove an amplification (the lemma is the degenerate
case K = ∅).

Proposition 5.2 Suppose (V , ∂V) is a Hilbert manifold with boundary, K ⊂ V
is a finite codimension submanifold such that K is transversal to ∂V and ∂K =
K ∪ ∂V. Suppose also that the following inclusions are homotopy equivalences:
∂V →֒ V, ∂K →֒ K, ∂V r ∂K →֒ V r K. Then there exists a diffeomorphism
θ : (V , ∂V) → (∂V × [1,∞), ∂V × {1}) so that θ(K) = ∂K × [1,∞).

Proof: Construct a relative collar neighborhood φ of (∂V , ∂K) in (V ,K), i.e., a
closed embedding φ : (∂V × [1, 2], ∂V × {1}) → (V , ∂V) such that its restriction
to ∂V × {1} is the projection on the first coordinate and φ(∂V × [1, 2]) ∩ K =
φ(∂K × [1, 2]). It follows from lemma 5.1 and from the homotopy equivalence
∂K →֒ K that the pair (∂K × [1,∞), ∂K × {1}) is diffeomorphic to (K, ∂K):
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we may assume that this diffeomorphism coincides with φ on ∂K × [1, 2] and
we also call it φ. Let K1 = φ(∂K × [1, 2)) and K2 = φ(∂K × [2,∞)). Standard
arguments (“pushing to infinity”) imply that the triple (V , ∂V ,K) is diffeomorphic
to (V rK2, ∂V ,K1). The set W = (V rK2)rφ(∂V × [1, 2)) is a smooth manifold
with boundary, ∂W being diffeomorphic to (∂V r K) × {2}. The homotopy
equivalences in the statement imply that ∂W → W is a homotopy equivalence
and then, by lemma 5.1, we have that (W , ∂W) and (∂W× [2,∞), ∂W×{2}) are
diffeomorphic. We conclude that there exists a diffeomorphism from (VrK2, ∂V)
to (∂V × [1,∞) r ∂K × [2,∞), ∂V × {1}) which sends K1 into ∂K × [1, 2). By
the same trick of pushing to infinity, there is a diffeomorphism from the last pair
to (∂V × [1,∞), ∂V × {1}) which sends ∂K× [1, 2) into ∂K× [1,∞), concluding
the proof. �

Step 2 is now accomplished and so is the proof of Theorem 4. In order to prove
Theorem 1 in the next section, we need to strengthen Theorem 4 somewhat: this
is done in Propositions 5.3 and 5.5 below. A closed disk B in a Hilbert manifold is
a closed tubular neighborhood of a point, i.e., a closed set which is a codimension
zero submanifold with contractible boundary.

Proposition 5.3 Let H be an infinite dimensional smooth Hilbert manifold and
σ : H → R3 a smooth surjective submersion with contractible fibers. Let B1

and B2 (resp. B′
1 and B′

2) be two closed disks contained in the two contractible
components of Hr C1 (resp. (R3r ⊲⊳)×H). Then there exists a diffeomorphism
θ : (H, C1, C2) → (R3, ⊲⊳, 0) × H so that θ(Bi) = B′

i, i = 1, 2.

Proof: First construct θ1 : (H, C1, C2) → (R3, ⊲⊳, 0) × H using Theorem 4. The
diffeomorphism θ1 sends C1 into ⊲⊳ ×H and can be easily modified away from
a neighborhood of C1 to obtain the desired diffeomorphism θ in view of Fact 1
below, usually referred to as the Cerf Lemma. �

Fact 1 (Cerf lemma) Let B be the closed disk in H, φ1, φ2 : B → H be smooth
codimension zero closed embeddings and U ⊂ H an open set with φi(B) ⊂ U .
Then there is an isotopy ht : H → H, t ∈ [0, 1], with ht|HrU = id, h0 = id and
h1 ◦ φ2 = φ1.

The following lemma is another easy consequence of Proposition 3.1 in [5].

Lemma 5.4 Let V0 be a contractible Hilbert manifold. Let V1 = V0 × [0, 1],
V2 = V0 × [0, 1) r intB, where B is a closed disk contained in V0 × (0, 1). Also,
∂V1 = V0 × {0, 1} and ∂V2 = V0 × {0} ∪ ∂B. Then there exists a diffeomorphism
θ : (V1, ∂V1) → (V2, ∂V2) such that θ|V0×{0} = id.

Proposition 5.5 Let (V , ∂V) be a Hilbert manifold with boundary consisting of
two contractible components ∂−V and ∂+V. Let φ± : ∂±V × [0, 1] → V be two
disjoint closed collar neighborhoods of ∂±V, say D± = φ±(∂±V × [0, 1]) and let
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B± be two closed disks contained in φ±(∂±V × (0, 1)). Then there exists a diffeo-
morphism θ : (V , ∂V) → (V r (∂V ∪ int(B+ ∪ B−)), ∂(B− ∪ B+)) which restricts
to the identity on V r (D+ ∪ D−).

Proof: Apply lemma 5.4 twice: in the first instance, take V1 = φ+(∂+V × [0, 1]),
∂V1 = φ+(∂+V × {0, 1}), V2 = V1 r (φ+(∂+V × {0}) ∪ intB+), ∂V2 = φ+(∂+V ×
{1}) ∪ ∂B+. In the second, replace the + signs by −. �

6 Proof of the main theorem

The idea of the proof of Theorem 1 is to consider the restriction of µf to the
preimage of the set of lifted matrices with nonnegative trace (the regions between
dotted vertical lines containing components of T2 in Figure 1) and use Proposition
5.5. Extending the diffeomorphism to the complement is then easy. To insure that
the hypothesis of Proposition 5.5 hold, however, we need Michael’s continuous
selection theorem (the main result in [11]), which we state below in the special
situation we use.

Recall that a surjective continuous map f : X → Y of arbitrary topological
spaces is a topological submersion if for each x ∈ X there exist a neighborhood
U ⊂ Y of f(x), a neighborhood V ⊂ f−1(f(x)) of x and an open embedding
h : U × V → X so that f ◦ h is the projection on the first coordinate. Clearly
a smooth surjective submersion of Hilbert manifolds is a topological submersion
and the pullback of a topological submersion by a continuous map is a topological
submersion.

Fact 2 (Michael’s theorem) Let X and Y be (possibly infinite dimensional)
manifolds and f : X → Y be a topological submersion with k-connected fibers.
Then f induces an isomorphism on homotopy groups in dimension smaller than
k and an epimorphism in dimension k. In particular, if the fibers are contractible
then f is a homotopy equivalence.

The proof of this result is based on the observation that for a topological
submersion f the assignment y ∈ Y  f−1(y) is lower semi-continuous in the
sense of Michael (since f is open) and equi-LCm (locally m-connected) for any m
(see [11] for definitions). In view of the main theorem in [11], if Y has dimension
n and any fiber is n-connected then any continuous section ϕ : A→ X, where A
is a closed subset of Y , has an extension to a section ϕ̃ : Y → X. This clearly
implies the first part of the statement and therefore the second, since manifolds
have the homotopy type of ANR’s.

The proposition below gives a normal form for a submersion with contractible
fibers onto a closed neighborhood of a cone.
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Proposition 6.1 Let n ∈ Z, n > 0, set In = [2πn − π/2, 2πn + π/2] and
⊲⊳n = {(x, y, z) ∈ R2 × int In |x2 + y2 = tan2 z}. Let (H, ∂H) be a Hilbert
manifold with boundary and σ : H → R2 × In be a surjective submersion with
contractible fibers so that ∂H = σ−1(R2 × ∂In). Let C = σ−1(⊲⊳n). Then there
exists a diffeomorphism θ : (H, ∂H) → R2 × (In, ∂In)×H so that θ(C) = ⊲⊳n ×H.

Proof: Set V = H, ∂±V = σ−1(R2 × {2πn ± π/2}). Fact 2 implies that each
space ∂±V is contractible. Choose two disjoint closed collar neighborhoods D± of
∂±V which are disjoint from C and two disjoint closed collar neighborhoods D′

± of
R2 ×{2πn± π/2}×H which are disjoint from ⊲⊳n ×H. Now, choose closed disks
B+, B−, B′

+ and B′
− in the interior of the closed tubular neighborhoods D+, D−,

D′
+ and D′

−, respectively. Set B± = B−∪B+ and B′
± = B′

−∪B′
+. Use Proposition

5.5 to construct the diffeomorphisms

θ1 : (V , ∂V) → (V r (∂V ∪ int(B±)), ∂(B±)),

θ2 : (I × R2 × H, ∂I × R2 × H) → ((int I × R2 × H) r (int(B′
±)), ∂(B′

±))

and Proposition 5.3 to construct the diffeomorphism

θ : (V r (∂V ∪ int(B±)), ∂(B±)) → (int I × R2 × H r int(B′
±), ∂(B′

±)).

The desired diffeomorphism is θ−1
2 ◦ θ ◦ θ1. �

We now return to the nonlinear monodromy µf : X∗ → G0 whereX = Hp(S1).
From Proposition 3.2, µf is a submersion provided that f ′ is nowhere flat. If
additionally f ′ is surjective, Proposition 3.6 implies the surjectivity of µf and
Theorem 3 proves that the fibers of µf are contractible. Let Z2 = Π−1(I) ⊂ T2 ⊂
G be the set of vertices of cones in T2: notice that Z2 is a group isomorphic to Z.

Proposition 6.2 Let f : R → R be a smooth nonlinearity. Assume that f ′ is sur-
jective and nowhere flat. Let X = Hp(S1), p ≥ 1, X∗ = Xr{constant functions}
and µf : X∗ → G0 be the monodromy map. Let C∗ = C ∩ X∗ = µ−1

f (G0 ∩ T2)

and C∗
2 = µ−1

f (G0 ∩Z2). Then the triple (X∗, C∗, C∗
2) is diffeomorphic to the triple

(G0, G0 ∩ T2, G0 ∩ Z2) × H.

Proof: Let Σ ⊂ R3 be as defined in the introduction and Σ2 = {(0, 0, 2πn), n ∈
Z, n > 0} ⊂ Σ the set of vertices of cones in Σ. From [6] there exists a diffeo-
morphism ψ : (G0, G0 ∩ T2, G0 ∩ Z2) → (R3,Σ,Σ2). Apply Proposition 6.1 for
σ = ψ ◦ µf , H = σ−1(R2 × In); attaching the pieces presents no difficulty. �

The attentive reader will notice that this proposition also holds (with the
same proof) if X is a smoothing Hilbert space or if it is a separable Hilbert space
satisfying the hypothesis of corollary 3.3. Also, if X is a smoothing Banach space
(or a Banach space satisfying the hypothesis of of corollary 3.3) then a similar
but weaker conclusion holds: the triples are homeomorphic.
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The use of Michael’s Theorem can be avoided if we are willing to prove di-
rectly that if P ⊂ G0 is diffeomorphic to a plane then the sets µ−1

f (P ) ∩X∗ are
contractible. This would be achieved by mimicking the proof of Theorem 3.

Theorem 1 is slightly different from Proposition 6.2: the Proposition is stated
for the triple (X∗, C∗, C∗

2) while the theorem is stated for the pair (X, C∗). Propo-
sition 3.1 guarantees that if f is good then C∗ = C. Also, f is admissible then C
is the disjoint union of C∗ and isolated points.
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