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Abstract: A characterization of critical sets and their images for suitable proper
Whitney functions in the plane is given. More precisely, necessary and sufficient
conditions are provided for the existence of proper Whitney extensions F' of f :
C — R? such that C is the critical set of F'. This result relies strongly on theorems
of Blank and Troyer.

Introduction

The purpose of this paper is to provide a characterization of critical sets and their
images for suitable proper Whitney functions from the plane to the plane. Knowledge
of the critical set of such a function F' is essentially sufficient for the understanding of
the global behaviour of F' and is most useful for the numerical inversion of F' (i.e., for
the computation of all the solutions of the equation F(z) = y) by continuation methods.
In [MST1], numerical inversion and a geometric description of F' are provided for generic
proper Whitney functions with bounded critical set. Interest in this last problem arose from
the study of Rankine-Hugoniot equations for hyperbolic conservation laws as considered
in [MT]. Given the motivation by the inversion problem, only functions from the plane to
the plane are considered here. The results in this paper are described in a form suitable
for eventual implementation of numerical inversion routines.

The numerical computation of the critical set of a function F' often gives rise to the
following situation: some critical curves have been found but it is possible, at least in
principle, to infer the existence of additional unknown curves. A simple example of this
phenomenon is when the signs of det(DF') near neighbouring curves are not compatible.
One is then led to the following purely topological question:

o In which conditions a given set C' of smooth curves and a smooth function f : C — R2
can be the critical set of a Whitney function F : R? — R? such that F|g = f?

In other words,

o When is it possible to extend f: C — R? to a Whitney function F : R?> — R? whose
critical set is C?

In this paper, a complete answer to this question is provided for C' being a finite union of
smooth curves, f(C) having a finite number of cusps and intersection points, all of them
being generic, and the additional requirement that the extension F' be proper.

This problem can be reduced to two virtually independent issues: the existence of
a local extension of f to a tubular neighbourhood of C' and the existence of extensions
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to regular regions (the connected components of the complement of a neighbourhood of
C) of proper immersions defined on their boundaries. The first issue was considered by
Francis and Troyer ([FT1]) and admits a simple answer. The second one is subtler: for
disks, it corresponds to Blank’s theorem ([Bl], [P] or, for our own slightly modified version,
[MST?2]). Troyer ([T], [MST2]) generalized Blank’s result for disks with finitely many holes.
Analogous criteria for unbounded regions are obtained in this paper.

Many authors, among them Bailey, Ezell, Francis, Marx and Verhey ([Ba], [E], [EM],
[F], [FT2], [MV]), extended Blank’s and Troyer’s theorems to functions form surfaces to
surfaces, often allowing functions to have cusps or branch points. Our interest in proper
functions from the plane to the plane leads us to consider in detail a highly singular point
at infinity. Techniques related to more general domains and images don’t seem to be
helpful for us and we thus stick to Troyer’s original approach, which, as seen in [MST1],
is also conveniently implementable.

In section 1, we define nice functions F' and adequate functions f, for which we later
obtain a complete answer to the two questions above. We also review the results of Blank,
Francis and Troyer.

In section 2 Troyer’s theorem is extended to unbounded regions in the plane with
finitely many boundary curves, assuming finitely many intersection points in the image of
the boundary. Immersions are assumed to be proper and the behaviour at infinity, which
plays a central role, is described in combinatorial terms.

Finally, in section 3, we characterize critical sets. As with Blank’s theorem, this result
is essentially constructive. Formulae for the topological degree and number of pre-images
of a regular point are also given. Such formulae are specially convenient for the numerical
inversion problem.

1. Preliminaries

In this section, we introduce notation and review some results of Blank, Francis and
Troyer ([BI, [FT1], [P, [T)).

Let C be a finite union of disjoint smooth curves in R?2 and let f : C — R? be a
smooth proper function. Since C' is to be the critical set of a Whitney function, curves in
C are assumed to be images of smooth proper embeddings of S or R in R2.

As mentioned in the introduction, to prove the existence of a proper Whitney extension
F of f, we first extend f to a proper Whitney function f, defined in a thin closed tubular
neighbourhood U of C whose critical set is C. We then extend f |5y to obtain a function F
which is a topological immersion outside C' and is a Whitney function outside 0U. To get
the desired Whitney function F' it is enough to regularize F at 8U, a standard procedure
which we shall not discuss in this paper.

The existence of F' is thus equivalent to:

(a) the existence of an extension f of f as above,
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(b) the existence of an immersion of a region in the plane with a prescribed behaviour at
its boundary.

Item (a) was studied by Francis and Troyer ([FT1]); item (b) for bounded regions is
Troyer’s theorem ([T]). In this section we review these results and in section 2 we discuss
item (b) for unbounded regions.

Recall that a Whitney function is a smooth function whose critical points are all folds
or cusps ([W]). A critical curve for a Whitney function F' admits a natural orientation,
which will be called the sense of folding, leaving nearby points with positive det(DF) to
the left of the oriented curve. For changes of coordinates preserving orientation, a cusp
admits normal forms (z,y) — (z,£y> — zy); the choice of sign indicates on which side of
its critical curve the cusp acts. More precisely, if we take a smooth curve following parallel
to the critical curve slightly to the left (resp. right), the image of the curve will form loops
precisely at the cusps for which the sign in the above normal form is + (resp. —). A cusp
is thus said to be effective to the left (resp. right) if the sign is + (resp. —).

Let v be a critical curve of a Whitney function F', parametrized, according to sense
of folding, by a smooth regular function g. Then o = F o g satisfies o’/ A o” > 0 at all
critical points of a. Francis and Troyer ([FT1]) proved that, if v is an oriented proper
curve embedded in R? and f : vy — R? is a smooth function then the following conditions
are equivalent:

o There is an open neighbourhood U of v and a Whitney function f:U—> R extending
f so that the critical set of f is vy, with sense of folding corresponding to the orientation
of ~.

o If g : R — v is a smooth orientation preserving parametrization and a = f o g then
o A’ > 0 at all critical points of a.

Furthermore, if these conditions hold, f can be chosen so that cusps are effective to
whichever side we prescribe. We call f : v — R? suitable if it satisfies these conditions.

In this paper, we consider only certain very well behaved Whitney functions, or better,
excellent functions with additional hypotheses of finiteness.

Definition 1.1: A smooth Whitney function F : R?> — R? is called nice if it satisfies the
following properties:

o F'is proper.
o The critical set C is a union of finitely many curves (necessarily disjoint).
o There are only finitely many cusps.

o There are finitely many intersection points in F(C), i.e., points in F(C) with more
than one pre-image in C.

o All intersection points are double, transversal and are not cusps, that is, all intersection
points have precisely two pre-images in C, both of them being fold points, so that
tangent vectors to C at these two points are taken by DF' to linearly independent
vectors.



Given a nice function F', with the curves in the critical set C' of F' oriented by sense of
folding, the definition of a nice function imposes conditions on C' and f = F|c motivating
the next definition.

Definition 1.2: Let C be a disjoint union of a finite number of embedded proper smooth
oriented curves. A smooth proper function f : C — R? is called adequate if it satisfies the
following conditions:

o Each connected component of R?2 — C' admits an orientation such that the induced
orientation on its boundary coincides with the given orientation in C.

o The restriction of f to each curve in C' is suitable, with finitely many cusps.

o There exist only finitely many intersection points (i.e., points in f(C') with more than
one pre-image), all of them being double (i.e., with two pre-images) and transversal
(tangent vectors to C at the two pre-images are taken by f' to linearly independent
vectors).

Except for the requirement that the number of intersections be finite (which is auto-
matically satisfied if C' is compact), adequate immersions correspond to what is known as
normal immersions.

For a nice function F' with critical set C' oriented by sense of folding, F'|¢ is adequate.
Thus, the precise question we answer in this paper is: when is it possible to extend an
adequate function f : C — R? to a nice function F : R? — R? whose critical set is C?

As we have seen, it is always possible to extend an adequate f to a Whitney function
f defined on a neighbourhood U of C such that the critical set of f is C; we may even
choose to which side cusps are effective. Notice that U can be taken to be a tubular
neighbourhood of €, with one connected component per curve and boundary made of
smooth curves; furthermore, given f , U can be made smaller if necessary so that f|3U is
an adequate immersion.

We now recall Troyer’s result ([T]) on the existence of extensions of boundary im-
mersions for bounded regions in the plane. Blank’s theorem ([Bl], [P]) is a special case of
Troyer’s where the region is a disk; in fact, Troyer’s theorem is proved by induction on
the number of holes so that Blank’s result is the first inductive step. Our statement of
Troyer’s theorem takes into account regions with arbitrary orientations.

Let A be a disk with & holes in the plane with orientation o4 = £1. Let f : 04 — R2
be an adequate immersion where 0A is oriented consistently with A. Troyer’s theorem
provides a criterion for the existence of an immersion F' : A — R? with sgn(det(DF)) =04
extending f.

Let g : S* — R? be a locally injective continuous function and § > 0 be such that
g is injective in any interval of size §. The turning of g, 7(g), is defined as the degree
of the function 6 — (g(0+6) — g(0))/|g(0 + &) — g(0)| from S! to SL. Notice that 7(g)
does not depend on the choice of . In particular, if g is regular, 7(g) is the degree of
0 — ¢'(0)/|9'(0)|, the usual tangent winding number (TWN). If « is an oriented simple
closed curve and f : v — R? is continuous and locally injective, 7(f) is defined as 7(f o g)
where g is any orientation preserving smooth parametrization of v by S!. For a disjoint
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union C of oriented simple closed curves and f : C — R? a locally injective function, 7(f)
is the sum of the turnings of the restrictions of f to the connected components of C. The
following proposition, whose proof is omitted for being standard, shall be useful in our
applications. As usual, x(A) is the Euler characteristic of A.

Proposition 1.3: Let A be an oriented disk with holes and let ¢ : A — R2? be an
immersion such that sgn(det(D¢)) = oa. Then 7(¢p|laa) = x(A).

For a closed subset X of R?, we call the connected components of R2 — X the tiles for
X. A ray for f is a proper embedding r : [0, +0c0) — R? which is transversal to f(C) and
never goes through an intersection point in f(C). Images of rays, oriented by the given
parametrization, are also called rays. A system of rays for f is a finite family of disjoint
rays with the following properties:

o the origin of each ray is in some bounded tile for f(C),
o each bounded tile for f(C) contains the origin of a unique ray.

The orientations of f(C) and the rays induce orientations, or signs, for their intersec-
tions: when the curve crosses the ray from right to left, we call the intersection positive,
otherwise negative. Each intersection also has a height associated to it: it is the number
of other intersections on the same ray which are closer to its origin. Thus, the first in-
tersection of a ray with a curve always has height zero. The Blank word for a curve -y
in C is obtained following f(v) once, respecting orientation, and writing down, at each
intersection, a letter corresponding to the ray, the sign of the intersection (as an exponent)
and its height (as an lower index). Blank words are defined only up to cyclic permutation:
any intersection can be taken as the beginning of the word. In the example of Figure 1.1,
the Blank words are

Buo = afbtctdf et fivtehdiet £

— o gte= £~

A concatenation of two Blank words from a pair of intersections in the same ray z~
and z*, one in each word, is obtained by cyclically permuting the two words so as to leave
z~ at the right extreme and z* at the left extreme of their respective words, juxtaposing
both words and eliminating the pair z—z™ produced at the juxtaposition. A concatenation
is positive when the height of z~ is smaller than that of z*. By concatenating a family of
Blank words, we obtain a Blank word for the family.

A Blank word admits a simplification if there exists a pair of letters z™, z~, such that,
after a cyclic permutation if necessary, there are no letters with negative exponent between
zt and z~. In this case, the simplification is obtained by deleting from the word z*, z~
and the letters between them; we say that z— was cancelled with zT. A simplification is
positive if the height of z~ is smaller than that of zT. A Blank word groups (or admits
a grouping) if we can sequentially simplify it until we get to a word with no negative
exponents. A grouping is positive when all simplifications are positive. Finally, a family of
Blank words groups positively if there exist positive concatenations giving rise to a single
word which in turn groups positively.



Figure 1.1

The Blank words Bwy and Bw,; group positively, with concatenation (f, fl+ ) and
simplifications indicated by brackets as follows:

7~ Y

— gt = (f— fEVpF et gt ot £t ot hE ot gt et
codg eq (fo fi)bTcsdses fagbgcl diel.

Notice that, in a grouping, brackets are not allowed to intersect.

Theorem 1.4: (Troyer) Let A be an oriented disk with k holes and f : A — R? be an
adequate immersion. Given a system of rays, consider the associated Blank words. Then
there exists an immersion F : A — R? extending f with sgn(det(DF)) = o4 if and only if

(a) 7(f) = x(4),
(b) the Blank words group positively.

2. Boundary immersions for unbounded regions

In this section we extend Troyer’s theorem to unbounded regions. Let A be an open
connected oriented subset of the plane with boundary given by a finite number of smooth
curves, which are either smooth embeddings of S or smooth proper embeddings of R. We
divide such regions A into three types: A is of type 1 if bounded, of type 11 if unbounded
with bounded boundary, and of type 111 if unbounded with unbounded boundary. As
before, o4 indicates the orientation of A, JA is compatibly oriented and f : 04 — R? is
assumed to be an adequate immersion. The bounded boundary components of A will be
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called v;,7 =1,...,k and the unbounded ones, 3;,7 =1,...,£. We are concerned with the
possible existence of an immersion F from A to R? extending f with sgn(det(DF)) = 4.
Troyer’s result, Theorem 1.4, settles this for regions of type I; in this section, we present
similar theorems for regions of type 11 and 111.

In our proofs, we often make use of auxiliary closed curves. We define an enveloping
curve in the domain to be a smooth simple oriented closed curve § with the following
properties:

¢ is oriented counterclockwise iff 04 > 0.

e}

e}

¢ encloses the bounded components of 0A.

0 is transversal to 0A.

[¢]

e}

For each unbounded component 3; of 0A (if any), ; meets ¢ at exactly two points.

If A is of type 11 the two last conditions in the definition of § are vacuosly satisfied.
Similarly, an enveloping curve in the image is a smooth simple oriented closed curve ¢ with
the following properties:

o ( is oriented counterclockwise.

o ( encloses the image of the bounded components of JA.

o ( surrounds the intersection points of the image.

o ( is transversal to f(0A).

o For each unbounded component 3; of A (if any), f(5;) meets ¢ at exactly two points.
As before, if A is of type 11 the three last conditions are vacuosly satisfied.

Let A be a region of type 11 and 0 be an enveloping curve in the domain. The
unbounded connected components of A — ¢ naturally correspond to the ends of A (see [9]).
The set 3; — J, on the other hand, has two unbounded connected components: following
the orientation induced by (3;, one component, o, goes from infinity to J, while the other,
wj, goes from 0 to infinity. The symbols a;; and w; shall be interpreted as names for the
two ends of 3;. Tracing ¢ according to its orientation and keeping track of the ends of
the 3;’s, we build a cyclic word with letters a; and w;, the word for the domain. This is
a precise formulation of the rather geometric concept of order of arrival at infinity of the
components of the boundary of A. It can easily be verified that this word is independent
of the choice of the enveloping curve . We assume the curves §; to be labeled so that
the word for the domain is cywis...wy. In particular, the boundary of an unbounded
component of A— 0 is composed of w;, an arc of § and «41 (where By41 = 1). Similarly,
using an enveloping curve ¢ in the image and letters f(c;) and f(w;), we define the order
of arrival at infinity of the curves f(8;), or the word for the image W.

The cyclic word W induces a permutation 7 of {1,2,...,2¢ — 1}. Turn W into a
linear word leaving f(wg) at the last position. The numbers w(2j — 1) and 7(2j) give the
positions of f(a;) and f(w;) in the linear word, respectively. We now define p4 to be
the number of runs of w ([K]), i.e., the number of maximal intervals in {1,2,...,2¢ — 1}
where 7 is increasing. Equivalently, p4 is the number of times required to go through W
in order to pass sequentially by the letters f(a1), f(w1),---, f(we), f(a1). A more relevant
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interpretation is the following: let § and ( be enveloping curves in the domain and image,
respectively. Consider orientation preserving immersions from ¢ to ¢ taking a; to f(o;)
and w; to f(wj), i.e., taking the points in 3; N J to the corresponding points in f(3;) N¢.
The minimum degree (or turning) of such immersions is p4.

In Figure 2.1, the word for the image is f(a1)f(a2)f(as)f(ws)f(w1)f(ws), the per-
mutation 7 is given by 7(1) =1, n(2) =5, 7(3) = 2, 7(4) = 4 and 7(5) = 3 and therefore
pa =3.

f(w,)

f(ay)

Figure 2.1

The turning of an oriented closed curve was defined in the previous section: we now
define the turning of an unbounded oriented curve with a finite number of self-intersections.
Take two points p and ¢ on the curve, one on each unbounded connected component of
the curve minus its self-intersections. Connect p and g by a simple arc which does not
intersect the portion pq of the curve between p and ¢ and consider the oriented closed curve
formed by the arc and pq, respecting in pq the original orientation of the curve. There are
two possible values, differing by 2, for the turning of the closed curve thus constructed,
depending on the choice of the simple arc. The turning of the unbounded curve is by
definition the average of these two values. In particular, a curve with no self-intersections
has turning number 0 and the turning of the curve in Figure 2.2 is —2. We then define 7(3;)
as the turning of f(/3;), where f(8;) has the orientation induced by f and the orientation
of B;. Similarly, 7(v;) = 7(f]+,)-

Lemma 2.1: Let A be a region of type 11 or 11, F : A — R? a smooth proper immersion
such that F|pa is an adequate immersion. Suppose that A is oriented so that o4 =
sgn(det(DF)). Let ¢ be an enveloping curve in the image of f = F|ga. Then

(i) If A is of type 11, the pre-image of ¢ by F is a simple closed curve.
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Figure 2.2

(ii) If A is of type 111, then each connected component of the pre-image of ( by F is a
simple arc lying in A joining end w; to ojy1.

Proof: Since F' is a proper immersion, the connected components of the pre-image of a
simple, closed, regular curve are either simple closed curves or simple arcs whose endpoints
belong to 0A. If this closed curve is the enveloping curve (, any arc must go from some
wj to aj:.

Let A be of type 11. From the previous paragraph, the connected components of the
pre-image of ¢ are simple closed curves. It suffices to show that there is only one such
component. We first show this for an auxiliary curve (, defined as follows. By properness
of F, there is an enveloping curve 6 bounding a disk Ds which contains the pre-image
of F(0A). Notice that, since A is of type 11, 6 has to be contained in A. Now, let ¢ be
an enveloping curve in the image surrounding F(Ds) and {. The connected components
of the pre-image of 5 are necessarily simple closed curves surrounding the disk Dg, by
construction. The existence of two such components would give rise to a critical point of
F' in the annulus between them, contradicting the fact that F' is an immersion. Thus the
pre-image of 5 is connected; the connectivity of the pre-image of ( follows from the fact
that, if R is the annulus bounded by ¢ and , the restriction of F to F~'(R) is a covering
map.

Let A be of type 111. Construct in the domain an enveloping curve § surrounding
F~1(D¢). Let ¢ be an enveloping curve in the image surrounding F(Dj). We first prove
(ii) for the auxiliary curve ¢. Remember that since 6 is an enveloping curve in the domain,
each connected component of A — Ds is an end bounded by w; and «;4;. Thus, from
the fact that ¢ surrounds F(Djs) it is clear that any connected component of F~1(() is
contained in one of these ends. Arcs must therefore join w; to a;4+1 and it remains to
prove that there are no closed curves in the pre-image of 5 . Indeed, the image of the disk
bounded by such a closed curve would be Df’ which contains D¢, contradicting the fact
that F~1(D;) is contained in Ds. In order to transfer the result from ¢ to ¢, consider
a smooth non-zero vector field in the annulus contained between ( and 5 transversal to
these two curves, coming in through ¢ and going out through ¢ and tangent to F'(3;). The
pullback of this vector field by F' defines a smooth non-zero vector field on the pre-image
of the said annulus. Each connected component of this pre-image must therefore be a disk
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with boundary consisting of an arc in w;, a connected component of F _1(5), an arc in
@j+1 and a connected component of F~1(¢), in this order. Item (ii) is therefore proved for

¢. m

From the above proof, the inverse image of the disk D bounded by ( is a disk with
finitely many holes. The outer boundary -, of this pre-image is simply the pre-image of
if A is of type 11. If A is of type 111, 74, is formed by arcs which are alternatedly connected
components of F~(¢) and segments of 3;; these segments come in the order indicated by
the indices. In either case, the inner boundaries are the ;. We orient v, so that it is
positively oriented iff o4 > 0; define 7(vo0) = 7(F |4, )-

Let F and A be as in the previous lemma. If A is of type 11, let d be the number
of pre-images of an arbitrary point on an enveloping curve in the image; clearly, this
number is independent of the point or the curve. We define the degree at infinity of F
by deg(F) = sgn(det(DF))d (notice that degrees are thus taken with respect to the usual
orientation of R?, not that of A). Any continuous function extending F' to the plane has
topological degree equal to the degree of F' at infinity.

If A is of type 111, we assign a non-negative integer d; (somewhat similar to d) to each
end E; of A, where E; is enclosed between w; and o;11. Consider an arbitrary enveloping
curve ¢ in the image and let p be the only intersection of { with F'(w;). The number d; is
defined to be the number of pre-images of p in the interior of the connected component of
the pre-image of ¢ corresponding to the end E;. Clearly, d; thus defined does not depend
on the choice of ¢ since there are d; pre-images of F(w;) (i.e., connected components of
F~1(F(wj))) in the interior of E;. We call sgn(det(DF))d; the partial degree of F' at E;.

For example, the behaviour at infinity of a nice proper polynomial function from R2
to R? can be determined by methods such as Newton polygons. This yields the number
of unbounded critical curves, the extrema of such curves, their order of arrival at infinity
and the partial degrees at each end.

Lemma 2.2: Let A be an oriented region of type 11 or 111 and F : A — R? be an immersion
such that sgn(det(DF)) = o4 and F|s4 is an adequate immersion. Let ¢ be an enveloping
curve in the image and consider 7, as above. Then

d if A is of type 11,

T(Yoo) =
22 7B) +22,di+ pa if A is of type 111

Also,
T (Yoo) + ZT(%) = x(4).

Proof: The first identity is easy for A of type 11 (be careful with orientations). For A of
type 111, if all d; and 7(f3;) are zero the curve F(7) can be deformed without changing
turning numbers to the orientation preserving immersion from 7., to ¢ with minimum
degree taking o; and w; to F'(«;) and F'(w;), respectively, hence the formula in this special
case. Clearly, changing a d; amounts to introducing extra turns to the above immersion.
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Finally, the additive property of turnings takes care of the 7(/3;), thus proving the first
identity for A of type 111. The last identity follows from Proposition 1.3. m

In order to obtain generalizations of Theorem 1.4 to regions of type 11 or 111 we make
use of Blank words. We first generalize the notion of systems of rays for an adequate
immersion f defined on the boundary of an unbounded oriented region A.

For regions of type 11, a system of rays for f is defined exactly as in Section 1. For
regions of type 111, a system of rays for f is again a finite set of embeddings of the closed
positive half-line, with the same properties of disjointness and transversality to the image
of the boundary curves as described in Section 1 plus the additional condition that a ray
may only intersect f(0A) finitely many times. Also, there must be one ray with origin at
each of the (finitely many) bounded tiles for the image of the curves. In each case, Blank
words for each bounded curve in 0A are constructed exactly as in Troyer’s theorem but
we now need an extra ingredient: the word at infinity.

Counsider a system of rays for f as described above. Let ¢ be an enveloping curve in
the image surrounding all intersections of rays with f(9A) crossing each ray transversally
and exactly once. Tracing ¢ counterclockwise and keeping track of intersections with rays
and images of boundary curves, we build a cyclic word W* with the letters used for the
rays, f(o;) and f(w;), describing the order of arrival at infinity of rays and images of
unbounded boundary curves (if any). This word is independent of the choice of  (with
the properties above). Notice that, for A of type 111, by ommiting the letters for rays we
obtain the word for the image W.

We first consider regions of type 11. Let d be a positive integer (the absolute value of
the degree at infinity of the desired extension of f). The word at infinity is made up of
d juxtaposed copies of the word of W* giving all letters a positive sign and height index
equal to oo (indicating that such heights are always greater than those of intersections

with f(9A)).

For A of type 111, given non-negative integers d; (the absolute value of the partial
degrees at E; of the desired extension), we first construct auxiliary strings S; and R;. The
string S; is obtained by following f(/3;), keeping track of oriented intersections with the
rays as before. The string R; is constructed by following W* starting at w; and reaching
ajy1 (or aq if j = £) after making d; full turns around W*, ignoring o’s and w’s. Finally,
the word at infinity is obtained by concatenating S1,R1,S2, Ra, ..., S, Re, in this order.
Letters in the strings S; receive height indices as before while letters in the strings R;
have height indices equal to co. An example is provided immediately after the statement
of Theorem 2.4.

Thus, for unbounded regions, we have, given an adequate function and a system of
rays, a Blank word for each bounded boundary curve and the word at infinity. The notions
of adjunction and grouping are exactly as in Section 1 taking into account both kinds of
words.

Theorem 2.3: Let A be an oriented region of type 11 and f : A — R? be an adequate
immersion. Given d > 0 and a system of rays, consider the associated Blank words. Then,
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there exists a proper immersion F : A — R? extending f, with sgn(det(DF)) = 04 and
degree at infinity equal to o ad if and only if

(a) d+ Z1§i§k 7(71:) = x(4),

(b) the Blank words together with the word at infinity group positively.

Theorem 2.4: Let A be an oriented region of type 1 and f : 9A — R? be an adequate
immersion. Given non-negative integers d;, j = 1,...,£, and a system of rays, consider

the associated Blank words. Then, there exists a proper immersion F' : A — R? extending
f with sgn(det(DF)) = 04 and partial degree at E; equal to oad; if and only if

(@) pa+22;d;+ 30708 + 32 7(n) = x(4),
(b) the Blank words together with the word at infinity group positively.

Before proving the theorems, we describe an example. Consider the region A of type
11 in Figure 2.3(a) with image of the boundary under an adequate immersion f shown in
2.3(b). We assign to the two ends of A partial degrees d; = 0 and dy = 2; orientation
and ends of curves are indicated in the figures. We then have 7(y1) = =5, 7(81) = +1
and 7(82) = 0. The word at the image W is f(w1)f(a2)f(a1)f(w2) and the corresponding
permutation is (1) = 3, n(2) = 1 and 7(3) = 2, whence pg = 2. Condition (a) in
Theorem 2.4 holds, since x(A) = 0. For the rays in the picture, the Blank word for f(~v1)

are

S1 = agbicidief [ gl hi,

R1 = (empty word),

Sy = afbyegdies 395 hg,

Re = altblchdlel fLogthtal bl ctdlel ffgthtat bl chdlel ffgtnt.

[ ohdie chyle ohate chle o] [ ohide ohate chdic ohule chate ohle o] [ ehnde chate ohdie chyle ohate chyle o]

The reader is invited to check that these words indeed satisfy condition (b) in Theorem
2.4. An immersion F' extending f therefore exists and the proofs of the previous theorems
show how to construct it; we shall see a related example in Section 3.

Proof of Theorem 2.3: We apply Theorem 1.4 to a bounded region Ay C A, with the
same inner boundaries as A and outer boundary given by a simple closed curve 7y, which
we now construct.

Consider a closed regular curve 7o in the image, parametrized by go : [0, 1] — R? with
90(0) = go(1) satisfying the following properties (see Figure 2.4, where d = 3 and 0A = C).

o The curve 7y turns d times conterclockwise around a fixed enveloping curve in the
image.

o The curve 7, intersects each ray transversally exactly d times.
o The curve 74y has exactly d — 1 self-intersections, all transversal.

We initially prove that if an immersion exists, then items (a) and (b) hold. By
continuation, there is a go : [0,1] — R2 with gy = F o g for any choice of go(0), a pre-
image of go(0). We want to show that g is the parametrization of a simple closed curve.

12
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Figure 2.3

Figure 2.4

Indeed, let us first prove that there are no proper loops. A loop has to surround 9A since
its image surrounds an enveloping curve and therefore the turning of the restriction of F
to the loop has to be equal to the turning of F'|,_, which is d. The image of a proper loop
must of course have smaller turning than d, a contradiction. If go(0) # go(1), continue
the inversion process until go comes back to go(0), which it must eventually do since F' is
proper. The turning of F o gy is greater than d since F' o gg traces 7y more than once. Let
Yo be the image of gg.

In order to obtain a system of rays for the new problem, it suffices to add to the old
system a few rays starting from the tiles created by 4y with positive intersections only. The
Blank word for <y in the new problem is therefore, up to irrelevant new letters, equal to the
word at infinity. Conditions (a) and (b) of our proposition follow from the corresponding
conditions in Theorem 1.4.

13



To prove the converse, let vy be any enveloping curve in the domain. We define
fo : Y0 — R? as an orientation preserving regular parametrization of 45. Let Ag be as
above and apply to it Theorem 1.4. Clearly, heights for letters in the Blank word of v, are
greater than the height of any other intersection on the same ray with any other curve, so
that the existence of a positive grouping is unaffected by the change of word. Therefore,
conditions (a) and (b) of the proposition imply conditions (a) and (b) in Theorem 1.4.
There exists then an Fj extending simultaneously f and fy to Ag. The existence of an Fi,
extending fo to A — Ay is trivial. By gluing Fy and F,, we obtain an extension F' of f to
A which may be non smooth, but which can easily be rendered smooth. u

Proof of Theorem 2.4: The proof is similar to that of Proposition 2.3: we apply Theorem
1.4 to a bounded region Ay C A with the same inner boundaries as A and with outer
boundary given by a curve 7o similar to v, i.e., composed of big chunks of ;s together
with arcs &; (to be constructed) connecting w; C B; to a1 C Bjy1.

_ Let ¢ be an arbitrary enveloping curve in the image. For each j take an oriented arc
&; outside D¢ with the following properties (see Figure 2.5):

o éj goes from f(w;) to f(ajt1),

o éj intersects any f(w) transversally from right to left and any f(«) transversally from
left to right,

o éj intersects any ray transversally from right to left,
o the intersection of the closed arc éj with f(w;) has exactly d; + 1 points,

o the arcs Ej are simple and disjoint.

Figure 2.5
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First we prove that the existence of F' implies (a) and (b). For each j take by contin-
uation a pre-image §; of §J, starting at the only pre-image of the beginning of £j in wj; the
process can get started since F' preserves orientation. This will of course produce a simple
arc entirely contained in the end E;. We have to prove that this arc ends at oj41 and that
its image is the entire arc éj. The continuation process cannot fail before we reach the
end of &; since we would then have less than d; pre-images of f(w;) in the interior of E;,
contradicting the fact that d; is the corresponding partial degree. On the other hand, the
process must end by reaching «;;1: otherwise, extend éj respecting sense of intersections
until we reach w; and we have d; + 1 pre-images of f(w;) in the interior of E;, again a
contradiction. We thus have the curve vy constructed from these arcs éj and chunks of
Bj’s, oriented consistently with the 8; (and thus, automatically, consistently with the {NJ)
As usual, let 7(v) = 7(F|,,). Clearly, since F' is an immersion, 7(v9) = 7(7o0), Where
Yoo 18 Obtained from ¢ and F, and so Lemma 2.2 implies item (a). Again, in order to
apply Theorem 1.4 to Ag we need to add new rays but these can be taken with positive
intersections only and are therefore irrelevant when considering grouping. The Blank word
for vy is, except for these new positive letters, the word at infinity; item (b) follows.

For the converse, let §; be arbitrary simple arcs contained in E; joining w; to ajy1.
We have thus defined the curve vy and f is defined on those parts of it coming from g;.
In order to extend f to 7y, define homeomorphisms from &; onto éj respecting endpoints.
In order to apply Theorem 1.4 to Ay we first observe that the curve vy and f on it were
constructed in order to guarantee that

7 (o) —PA+Z 7(B)) + d;)

similarly to Lemma 2.2. Item (a) in Theorem 1.4 now follows from our item (a). Item
(b) follows from our item (b) since again we need to introduce a few irrelevant rays and
then the word for ~yg is essentially the word at infinity. As in the previous theorem, the
extension to each end is trivial; the overall smoothing is again done by classical methods.

3. The main theorems

In this section, we finally characterize critical sets of nice functions (Theorem 3.1) and
provide formulae for degree and number of pre-images in terms of the critical set (Theorem
3.2).

Recall that for a closed subset X of R? the connected components of R2 — X are called
tiles for X. Let C be the union of disjoint oriented curves v;, 1 <7 < k and §;, 1 < j </,
where v; and j3; are images of proper embeddings of S' and R respectively. We assume
that these curves are consistently oriented, i.e., that any tile S for C' can be oriented so
that the induced orientation in 0S C (' is consistent with that of C: we then say that S is
consistently oriented with C. Notice that if £ = 0, we have bounded tiles (regions of type
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1) and a single unbounded one (of type 11). On the other hand, if £ > 0, all unbounded tiles
are regions of type 111 and there are at least two of them.

As we saw in Section 1, cusps of a Whitney function can be effective to the right or to
the left of their critical curves. The function f alone does not determine to which side of
a critical curve a cusp will be effective and it is thus natural to consider this information
as another given of the problem. We therefore assign indices 1 or r to cusps indicating if
they are to be effective to the left or right, respectively, for the desired Whitney function
F. Thus, a cusp labeled 1 (resp., r) will be called effective in S if S is the tile for C
immediately to the left (resp., right) of the cusp.

Again, we begin by constructing the Blank words. A ray for f|ss is now a proper
embedding 7 : [0, +00) — R? with the previous properties and the extra requirements that,
except possibly at the origin, the ray does not meet images of cusps. Similarly, a system
of rays for f|as (or, for simplicity, a system of rays for S) is a finite system of disjoint rays
with the following properties:

o Given a bounded connected component of R? — f(0.5), there exists exactly one ray
such that its origin lies in this connected component.

o Given a effective cusp in S, there exists exactly one ray whose origin is the image of
this cusp; furthermore, the ray leaves the cusp to the right of f(95).

o Rays start either in a bounded component of RZ — f(9S) or at the image of an effective
cusp in S.

Given a system of rays for S of type 1, we now construct a Blank word for each ~;.
If S is of type 11 (resp. 1I1), given also d > 0 (resp. d; > 0 (1 < j < £)), we construct,
besides the Blank words for each ;, an additional word at infinity. The words for each
such ~; are constructed by following f(~;), keeping track of oriented intersections with the
rays, as before. Letters corresponding to intersections at images of cusps receive a minus
sign and a height index 0, by definition. The word at infinity is constructed as before,
again assigning to letters corresponding to cusps a minus sign and a height index 0.

Given a tile S for C, let x(S) be the total number of effective cusps in S and 7(S) be
the sum of the turning of f at each boundary curve of S.

Theorem 3.1: Let f : C — R? be an adequate function and let labels 1 and r be assigned
to the cusps of f. Consider a system of rays for each tile S for C. Then there exists a
proper Whitney function F extending f to R? having critical set C, with sense of folding
corresponding to the given orientation of C' and such that a cusp is effective to the left
(resp., right) if its label is 1 (resp., r) if and only if, for each tile S (consistently oriented
with C), the following condition holds:

o For S of type 1, the identity
7(8) = K(S) = x(5)

holds and the Blank words group positively.
o For S of type 11, we have that the number d, defined by

7(8) = K(S) + d = x(5)
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is strictly positive and the associated Blank words group positively (in this case,
d = | deg(F)]).

o For S of type 11, with ends E;, 1 < j < ¢35, there exist non-negative integers dj,
1<j</¢5 with
ps+7(S) = K(S)+ Y dj=x(9),

1<j<es

such that the associated Blank words group positively (d; is the absolute value of the
partial degree of F' at the end E;).

az

Wy

Figure 3.1

As an example, consider C and f(C) as in Figure 3.1, (a) and (b), respectively. The
tiles in the domain are Sy, So, S3 and Sy, the first three being of type 111 and the last one of
type 1. The orientations of C and f(C) (which are to be the sense of folding) are indicated,
as are the labels for cusps and partial degrees. We now check the condition in Theorem 3.1
for tile S;. It is easy to see that k(S1) = 6 and that 7(v1) =1, 7(81) = 1 and 7(082) = 0,
whence 7(S1) = 2. Since the behaviour at infinity of this example for tile S; is identical to
that of the example shown in Figure 3.3, we have pg, = 2 and the same word at infinity.
The expression for x(S;) = 0 therefore holds. Also, the Blank word for +y; is identical to
that for the example in Figure 2.3, and again the words group positively. The reader will
easily check that the remaining tiles also satisfy the appropriate conditions in the above
theorem. Thus, there is a proper Whitney function F' extending f with prescribed critical
set C, partial degrees and senses of cusps.

In order to provide a geometric description of F', we show F~1(F(C)) in Figure 3.2(a).
Five of the six tiles for F(C) are simply connected and thus diffeomorphic by F' to the
connected components of their pre-images, which are tiles for F~!(F(C)). The pre-image
of the tile for F(C) surrounding F'(y;) has three connected components in which F' is a
diffeomorphism and a fourth where F' is a five-fold covering map.

Proof of Theorem 3.1: Since f is adequate, it can be extended to a Whitney function
f defined on a thin tubular neighborhood U of C'. In order to prove the existence of F', it
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Figure 3.2

therefore suffices to extend to each tile S immersions which are already defined near the
boundary.

Let S be a tile and let its boundary be composed of bounded curves 7, 1 < i < k%,
and unbounded curves ,839, 1 < j <45, We denote by x°(v7) (resp., ns(ﬂf)) the number
of cusps on v (resp., [5’39 ) which are effective in S. Thus,

7(S)= Y s+ Y 9(6)

1<i<kS 1<j<eS

and

K(S)= Y &0+ Yo w5(B7)

1<i<kS 1<j<eS

Let S* C S be a closed set whose boundary is composed of smooth curves v and 85 which
are sufficiently near the corresponding curves in 95 and contained in U. Orient ;" and 3}
as the nearby 'ygg and ﬂf , so that they form the oriented boundary of S*, which is oriented
positively or negatively according to the constant sign of det(D f )in SNU. For S of type
I, 11 or 111, we apply to S* Theorem 1.4, Theorem 2.3 or Theorem 2.4, respectively. We
now show the equivalence between the conditions in Theorem 3.1 and the hypotheses of
these theorems.

From the local behaviour of cusps, each effective cusp creates a little loop in f(v;)
or f (ﬂ;), always negatively oriented (see the paragraph immediately following the proof
for an example) and if v} and B; are sufficiently near v¢ and ,Bf these are the only new
intersections. This implies

T(f(7) = 7(v8) = w5 (37)
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and

T(F(6;)) = 7(67) — °(55).

Also, the connected components of R* — (|, f(yr)u U, f(7%)) coincide with those of
R2 — (U, F(7) U, f (7)) except that one small disk has been created by the loop around
the image of each effective cusp. As an example, Figure 2.3 shows S for the example in
Figure 3.1. The Blank words (with cusps) as constructed for our theorem are therefore the
Blank words for S*. Thus, the hypothesis of the appropriate theorem for the type of S*
hold and the desired immersion exists. If we take the immersions for all tiles and smooth
out the resulting function we obtain the proper Whitney function F'.

Conversely, if F' exists, its restriction to S* as above is an immersion and the same
theorems show that the conditions in our theorem hold. u

The next result gives formulae for the topological degree of F' and for the number of
pre-images of an arbitrary regular value. In the formulae, we use either information about
the behaviour of the function near infinity (such as pg or d;) or finite information (such
as J or K).

For a closed oriented parametrized curve o : S' — R? and a point p not on the
image of « let w(«a, p) be winding number of « around p (i.e., the topological degree of
0 — a(f) —p/|a(f) —p|). We extend this concept for parametrized curves of the form
a : R — R?, where « is a proper continuous function injective in the complement of a
compact interval I. Consider a circle around the origin such that «(I) and p are in its
interior. Taking the maximal arc of o which contains (/) and is in the interior of the
circle, we construct two oriented closed curves by using two complementary arcs in the
circle. We define the winding number w(q, p) as the average of the two winding numbers
of these auxiliary closed curves around p. Notice that w(«, p) independs on the choice of
the circle and is always in Z+1/2. In Figure 2.2, we have w(a,p1) = 1/2, w(a, p2) = —1/2
and w(a, p3) = —3/2.

Let F' be a nice function with bounded critical curves 7; and unbounded critical curves
B, always oriented by sense of folding. Consider a connected component 7" of R? - Bj.
Let o(T) be the sign of det(DF') in the unbounded tile S contained in T, pr = ps and
dr be the sum of the absolute values of the partial degrees of F' on the ends of S. Let
k be the total number of cusps of F' and 7(C) be the sum of all 7(3;) and 7(v;). For T
as above, we define k(T) to be the number of cusps which are in the interior of T or are
effective in the unbounded tile of T'. Similarly, let 7(T) = }_. -7 7(7); notice that only
bounded critical curves are taken into account.

Theorem 3.2: The topological degree of F' is
deg(F) = ) _o(T)(pr + dr)

= o(T)(K(T) — 29(T) + 1)
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and the number of pre-images of an arbitrary regular value p is

#FHp) =Y (pr +dr) + 22 (w(F(85),p) — 1/2) + 2Zw(F(%),p)

T 7 A
=14£-27(C)+2) w(F(B;),p) +2Y_ w(F(v),p)
j i
where T ranges over all connected components of R? — | J, . j<e B

For instance, the degree of F' given in Figures 3.1 and 3.2 equals 2 and the number of
pre-images in each tile for F'(C) is indicated in Figure 3.2(b).
Proof of Theorem 3.2: We use the same notation for the boundary of a tile S as in the
proof of Theorem 3.1.

Take a curve ¢ in the image which is enveloping for every tile and consider its pre-image
by F', a curve ¢ which is, up to orientation, an enveloping curve for every tile in the domain.
For each unbounded tile S construct 72 as in Section 2. The turning of F(v5), 7(73),
can be interpreted as the degree of a function ¢° from 75, to ¢. In order to construct ¢,
first smooth out the curves F (ﬁf ) near cusps without introducing new intersections and
bend them near ¢ so that they become tangent to (, with counterclockwise orientation in ¢
corresponding to the sense of folding in F(,Bf ). Clearly, 7(v5.) coincides with the turning

of this deformed curve. Now define ¢°(p) = F(p) for p € 6 and ¢°(p) as the direction of
the normal vector to the auxiliary curve above near F(p) for p € ,65-9 . By construction, the

degree of ¢° is the turning of the deformed curve and so deg(¢°) = 7(v5)).

Clearly, the topological degree of F' is the degree of F'|s as a function from the oriented
curve ¢ to the oriented curve (. Thus,

deg(F)= Y (o(S)deg(¢®))= Y (a(8)7(73)),

unbounded S unbounded S

where each «5. is oriented according the sign of det(DF). The first formula for deg(F)
then follows from Lemma 2.2 since the terms 7(3) cancel out.

Now, for an arbitrary unbounded tile S we have, from Lemma 2.2 and Theorem 3.1,

T(Yo0) = X(S) + K(S) = > 7(%).

1<i<kS

On the other hand, for a bounded tile S’, again from Theorem 3.1,

0=x(8)+r(S) - > 7().

1<i<kS’

Adding all these equations over the tiles contained in a given T', we obtain

T(ve0) = X(S) + K(S) = D T+ D [ x(S)+K(S)— D ()

1<i<kS S'CT 1<i<ks’
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Notice that the Euler characteristics add up to x(7T) = 1. Also, for each bounded critical
curve v C T, 7(y) appears twice in the above expression. Finally, each cusp is counted
exactly once since it is effective in one tile only. Thus, the above identity reduces to
7(v3) = k(T) — 25(T) + 1, completing the proof of the degree formula.

Let p be a regular point. The number of pre-images of p in a bounded tile S is given
by the sum of w(F(;),p) over all boundary components «y; of S (each v; being oriented,
as usual, by sense of folding), as the sign of det(DF') inside S is constant equal to og.
Similarly, the number of pre-images of p in an unbounded tile S is given by the sum of all
w(F(v;),p) (again over all bounded boundary components) with w(F (y5),p). We have,
however,

w(F(E),p) =pr+dr+ Y (w(F(B)),p) —1/2);
1<5<es

the proof of this identity is similar to that of Lemma 2.2 and is left to the reader. By
adding all these terms, we get the first formula for the number of pre-images of a regular
point.

For the other formula,

#F 7 (p) =14 (pr+dr—1)+2> w(F(B)),p)+ 2Zw(F(%),p)

J
and by Theorem 4.1,
ps +ds —1=x(5) —7(5) + K(S) — 1,
for the unbounded tile S contained in T and
0=x(S") —7(8) + x(S")

for bounded tiles S’ contained in 7. Adding the identity for S and the identities for all
S’, we have

J

protdr —1==3 7(47) =23 7(%) + &(T)

whence

Z (pT +dr — 1) = —2‘3’(0) + K,

yielding our theorem.
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