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Abstract: Let H'(S!') be the space of periodic real functions with derivative
in L? and f : R — R be a smooth function with no double roots. Then there is
a diffeomorphism of H'(S') taking the set Z = {v € H'(S')| [4: f(v(t))dt = 0}
to a hyperplane. In this paper we state and prove a general version of this
example. We consider a Banach space V of functions from some manifold M
to R™ and a function f:+Mx R™ — R™ under suitable hypothesis, there is
a homeomorphism of V taking Z = {v € V| [,, f(m,v(m))dm = 0} to a closed
subspace of codimension n.
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Let H'(S') be the space of periodic real functions with derivative in L?. The set
Z ={v e H'(S")| [4 v*(t)dt = 1}, at first sight, looks like a sphere: infinite dimensional
topology (for which a good reference is [Ku]) tells us that the unit sphere is diffeomorphic
to a hyperplane in Hilbert space. Actually, there is a diffeomorphism of H!(S!) taking Z
to a hyperplane. In this paper, we present a generalization of this example.

Let M be a compact manifold with a smooth Riemannian metric inducing a measure
p with p(M) = 1. Let C*°(M) be the Fréchet ring of smooth real valued functions on
M. Set V to be a separable Banach space continuously included in C°(M) which is
also a topological C°°(M )-module (i.e., multiplication is continuous). Given a continuous
function f, : M x R — R", define F}, : V — R"™ to be the average of the related Nemytskii
operator: Fn(v) = [,; fa(m,v(m))dp. We further request that f, admits continuous
partial derivatives of all orders with respect to the second variable, whence F}, is smooth.

Let II; : R® — R be the projection to the first k coordinates. We say 0 is a strong
regular value of Fj, if it is a regular value of the composition Fy = Iy o F,, for all k,
1 <k < n. From now on, assume 0 to be a strong regular value of F,. Since the ranges
of F}, are finite dimensional ([L]), the levels Z; = F, '(0) are nested closed manifolds of
codimension k in V.

Theorem: The levels Zy are contractible. Furthermore, there is a global homeomorphism
U of V taking each Zy, to a closed linear subspace of codimension k; ¥ can be taken to be
a diffeomorphism if V' is a Hilbert space.

For a function ¢ : A x Ay — B we write Dyg, say, for the derivative with respect
to the second variable; thus, if A; and B are vector spaces, Dyg goes from A4; x A, to
L(Ay, B). The vector spaces R¥ always receive the Euclidean norm and, for a finite matrix

A, [[A]] = max = |Az|.
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Lemma 1: Let X be a topological space and B*(R) be the open ball of radius R around
the origin in R*. Let g : X x B¥(R) — R be a continuous function, smooth in the second
variable, satistfying |¢g(x,0)| < R/2 and ||D2g — I|| < 1/2. Then there exists a unique
continuous function h : X — B¥(R) such that g(z,h(z)) =0 for all z € X.

This result is a variation of the implicit function theorem and its proof is similar.

Lemma 2: There are continuous functions p; : Z — V,1=1,...,k forming a basis of a
complement of the tangent space T, Zy, for all z € Zy and such that the derivative DyFy,
of the function

Fr: Zp x RF = RF
(z,a) — Fi(z + Z aipi(z))

with respect to the second variable is the k x k identity matrix at all points of the form
(z,0).

Proof: At any point z of Z; there is a vector ¢;(z) off the tangent space T.Z;; ¢1(2)
can be chosen so that DFi(z) - ¢1(z) = 1 (notice that there is no reason for ¢; to be
continuous). Since F' is smooth, there is a neighbourhood W, C Z; of z such that 1/2 <
DF(z") - qi(z) < 2 for 2/ € W,. From the paracompactness of Z; ([L]), we can pick a
locally finite refinement W, , A € A, of this covering of Z; and an associated continuous
partition of unity =y. Let ¢1(z) = EAeA Ea(z)g1(zx): it satisfies 1/2 < DFy(z)-¢1(2) < 2.

We now construct a continuous ¢s : Zo — V such that the vectors ¢; and ¢, span
a complement of T,Z;. Again, there is a vector ¢2(z) at each z € Z3 such that ¢; and
g2 span a complement. We can even pick ¢z so that the determinant of the real 2 x 2
matrix with columns DF,(z) - ¢1(z) and DF5(z) - g2(z) is 1. A similar construction with
partitions of unity yields ¢z such that 1/2 < det(DF»(z)-G1(z), DF3(z) - 42(2)) < 2; notice
that the determinant is linear in the second column, the first being fixed. Inductively,
we construct ¢;, ¢ = 1,...,k and thus have a continuous basis for a complement of T, Zj.
The derivative of F} at z in this basis restricted to this complement is a continuous k x k
invertible transformation A(z): the pull-back of the canonical basis of R¥ under A(z) gives
us the required basis p;(z), 1 =1,..., k. [ |

Lemma 3: The sets Zy, are path-connected and the homotopy groups m.(Zy), r = 1,2,...,
are trivial.

This lemma is the technical core of the paper and an informal description of the proof
may be helpful. We must connect z € Zj to a fixed base point zg € Zj: first decompose
M in a large number L of roughly uniformly distributed sets Wy, £ = 1,.... L. At time
steps 1/L,2/L,...,1, substitute the original value of z by the desired value, prescribed by
zg, in the sets Wi, Wy, ..., Wr. Since the required restrictions defining Z; are given by
integrals, the resulting path should not deviate much from Z;. The main difficulty lies
in controlling the error so that the path can be pulled back to Z; uniformly on compact
families of z’s.

Proof: Let h : S" — Z; be a continuous map, so € S” be a base point and z; =
h(sg). We construct a homotopy H : S™ x [0,1] — Zi of H(0) = h to the constant map
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H(1)=hy:S" — Zg, hi(s) = zo; the case r = 0 corresponds to path-connectedness. Set
fr=Tgo f.

From Lemma 2, Dy Fi(2,0) = I for z € Zj. Set e > 0, ¢ < 1/8 such that
| DaFi(h(s),a) — I|| < 1/4 for all s € S” and all @ € R¥, |a] < 4e. Let C be such
that o

A()m)] < 5 k()] < 57
foralls € S", me M and:=1,...,k. Let L > 8 be an integer satisfying

Le Le
—, |D —
|fk(m7c)| < 4 ? | ka(m7c)| < 407
for all ¢ € R, |¢| < C and m € M. By uniform continuity, take €;,6; > 0 such that

' o / |fk(7nac) _fk(mlacl)| < 6/87
d(ma7n ) < o1, |C c | < €1, |C|7 |C | <C= { |D2fk(m,6) _ Dgfk(TTL’,C')| < 6/80.

Take 6 > 0, 6 < 61, such that

: |h(s)(m) — h(s)(m')| < e1/2,
d(m,m’) <& = { pi(h(s))(m) — pi(h(s))(m')| < min{e; /2k, C/4kL},

for all s € ™, m,m' € M.

Decompose M = Uj:l,...,JU_j into disjoint open sets U; of diameter less than 6/2:
for example, take a finite set {my,... ,mJ} whose complement contains no balls of radius
6/4, and define U; = {m € M|j # j' = d(m,m;) < d(m,mj )} (i.e., the Voronoi cells
associated to {ml, cooymy}). Split U; = U, 1....1, Uje into disjoint open sets Uj¢ of equal
measure. Roughly, the homotopy H 1eplaces h by hy inside W, = U]:1,...,J Uje in the time

interval [(¢ —1)/L,¢/L].

Choose ¢ > 0 such that
(a) for all j and ¢, /,L(Uj—;C) <(1+ i
(b) for all j and £, w(U;,°) > (1 — 57

)u(Uje), where U = {m|d(m,Uj¢) < (},
)u(Uje), where U =Uje — Ui or 0e Usier

Denote by ¢;¢ a smooth partition of unity associated to the finite covering {Uj—zc} SO

that ¢;¢ is 0 outside U]-—EC and 1 in UJ}C. We now construct a path ¢ of smooth functions
from M to [0,1] joining the constant functions 0 and 1, for which intermediate functions
are equal to 0 or 1 on most of M and their average inside large open sets is roughly ¢ at
time ¢:

where ¢t € [({ — 1)/L, (/L] and f is a linear interpolation going from 0 to 1 as t goes
from ({ —1)/L to /L. Define H(t)(s) = h(s) + &(t)(h1(s) — h(s)): this gives a smooth
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deformation from £ to h; which at intermediate times take us only slightly away from Zj.
Notice that, by convexity, |H(t)(s)(m)| < C/2 for all ¢, s and m.

Claim: |F(H(t)(s))| < e

In an obvious notation,

Fu(A(1)(5)) = ( /u )+ /u W) (felom, B (t)(3)(m))dp
At A+As.

Clearly |A=| < €/4 since the domain of integration has measure 1/L and |fx| < Le/4.
Also,

=3 fk<m,ﬁ<t><s><m>>du>

j:17"~1J U[(ZUjl

= | Z /U . fe(m, ha(s)(m))du +E1j>
(0 —1)

— I fe(m, ha(s)(m))dp + Ez;5 + Elj)
‘ U;

= (E2j + Euj),
G=1,.,d

where the last integrals vanish since hi(s) € Z; and we are left with estimating the errors
E,; and E,;. The functions I;T(t)(s) and hq(s) coincide in deg UJ}C and we therefore have

Le 1
|Evjl <2 g pUs),
since /,L(U£<EU]}C) > (1 = 1/8L)u(U,ciUje) (by (b)) and [fix] < Le/4; adding in
7, E]‘ |Evj| < €/16. For m € Uj, fr(m,hi(s)(m)) differs by at most €/8 from
fe(mj, hi(s)(m;)), for a fixed but arbitrary m; € U;. Thus,

1= futoms ) = S22 [ im0

Uj.

t<i

(Fr(m, ha(s)(m)) = fe(my, hi(s)(m;))dp

IN
c—

/U’ (fr(m, ha(s)(m)) — fe(mj, hi(s)(m;))du

J




and E]‘ |E2j| < €/4. Summing up, |A<| < 5¢/16.

~ On the other hand, since in most of the domain of integration of A5 the functions
H(t)(s) and h(s) coincide, similar estimates yield |As| < 5¢/16. a

We now show how to correct H to obtain the desired homotopy H with values in Zj.

Let p(t,s) be the k-tuple of functions p;(t,s) = pi(h(s)) + qg(t)(pz(hl(s)) — pi(h(s)))
so that |pi(t,s)(m)| < C/2k for all ¢, s and m; similarly, we denote by p the k-tuple of
functions p;. Define

Fr:[0,1] x S™ x B¥(4e) — R*.
(t,s,a)r—>Fk —I—Z a;pi(t,s))

Claim: | DsFi(t,s,a) — I|| < 1/2, for allt € [0,1], s € S”, a € B*(4e).

For convenience, set

where b is an arbitrary vector. Again, split M as in the previous claim to get
D3.7:_k(t, s,a)-b= / a(m, ﬁ(t)(s),ﬁ(t, $))B(m, p(t,s))du
M
= (A +AL +AL) b

Recall that t € [({ — 1)/L,¢/L]. The domain of integration of A" has measure 1/L and,
for b of norm 1, the integrand is bounded by L& < yielding ||AL|| < €/8.

ac 2>
Also,

Acv= Y /u . €lm HE(), 5 9)m,50,9))d
- ( [, lm b pUma(s))300m s () + B2 b)
- ( [ o, o), 1) 0 () + By -+ - b)
-y e
I DQF]C ya)-b+ Z (Ezj'b+E1j'b)a

j=1,...,J
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and thus

i — (-
AL __IH<—HD2]-";€( I|\+Z 1B+ 1 E3,11) -

Since || Dy Fr(hi(s),a)—I|| < 1/4 we are again left with estimating the errors Eij and Eéj.

The integrands in the first and second lines coincide in [ J,_; UﬂC and therefore

Le 1

E . bl <2

the bound on the integrand being as above for AL; adding in j, >, || E;|| < €/32. For
m,m' € U; and |b| = 1, the integrand for m differs by at most €¢/8 from the integrand for
m'. Indeed,

|a(m, ha(s), p(h1(s)))B(m, p(hi(s)) — a(m', by
< la(m, ha(s), p(h1(s))) — a(m’, hi(s), p(ha(s)
+la(m’, h(s), pha ()] 18(m, p(ha (s

e C Le C
< @5—}—@]6@ 6/8.

~

8), p(h1(s)))B(m’, p(h1(s))] <
)B(m, p(ha(s)))] +
))) = B(m', p(ha(s)))] <

~—

Hence, ||Eq;|| < £|U;| and the rest of the proof proceeds as for the first claim. O

From Lemma 1, we can solve the equation .Z:—k(t, s,a) =0 in a, uniquely and continu-
ously in t and s. For such a(t,s), set H(t)(s) = H(t)(s)+ >, ai(t,s)pi(t,s); this completes
the proof of the lemma. [ |

In order to prove our main theorem, we need a couple of known results.

Proposition 1: Given a contractible connected smooth submanifold H' of codimension
1 of a separable Hilbert space H of infinite dimension, there is a diffeomorphism of H to
itself taking H' to a closed subspace of codimension 1.

The proof of this proposition is entirely similar to the one given in [S] for the finite
dimensional situation, dim(H) > 4.

Following [BH]|, we define a topological slicing submanifold of a separable infinite-
dimensional Hilbert space H to be a closed bicollared topological submanifold Z of codi-
mension 1 in H such that the complement of Z has two connected components. We now
state Proposition 1.7 in [BH] suitably restricted to our needs.

Proposition 2: Let H be a separable infinite-dimensional Hilbert space and let Z be a
topological slicing manifold in H. Then there exists a homeomorphism of H taking Z to
a smooth slicing manifold.

Proof of the theorem: If V is a Hilbert space, the triviality of m.(Zy) implies that Zj
is contractible ([Ku]). By induction, assume (after composing with a diffeomorphism) Zy/,
k' < k, to be closed subspaces (set Zy = V). By Proposition 1, there is a diffeomorphism
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of Zy_1 taking Zj to a closed subspace of codimension 1 which extends by a cartesian
product to a diffeomorphism of V taking Zj, k' < k, to closed spaces, thus proving the
theorem in this case.

In general, if V' is a Banach space, use the fact that all separable infinite dimensional
Banach spaces are homeomorphic ([Ka]) to identify under a homeomorphism the space V
with some Hilbert space H. Again by induction, after composition with a homeomorphism,
Zi, k' < k, are closed subspaces of H (set Zy = H). Now, Zj is a topological slicing
submanifold of the Hilbert space Zy_;. Indeed, strong regularity of F), at 0 implies that
Zy 1s a closed bicollared topological submanifold of codimension 1. Also, the complement of
Z in Zy—1 has two components: the sign of the k-th coordinate of F}, indicates a splitting
of the complement in two open sets. These are connected: we can always join an arbitrary
point in the complement to a tubular neighbourhood of Z; by some path contained in
the complement and Zj, as well as its tubular neighbourhood, are known to be path-
connected. By Proposition 2, we can assume Zj to be smooth after a homeomorphism in
Z—1, which again extends to a homeomorphism in H. We now see that Zj is contractible
and Proposition 1 gives us a diffeomorphism of Z;_; (and thus of H) taking Zj to a linear
subspace, completing the proof. [ |

Remarks:

1. A similar theorem holds for functions v from M to R™: such an apparently more
general result can be reduced to our case by substituting M for the cartesian product
M x {1,2,...,n'}, where each connected component will take care of a coordinate of v.
Notice that there is no requirement that M be connected.

2. Very little of the manifold structure of M is used. Manifolds with boundary, for in-
stance, can be handled with minor alterations of the proof. More generally, the hypothesis
could be weakened at the price of more cumbersome statement and proof.

3. It is essential in this construction that g must have no atoms. In particular, the
theorem fails rather trivially if M is replaced by a finite set and the degenerate case of
manifolds of dimension zero must be excluded.

4. Strong regularity is a necessary hypothesis. Consider M = S', V = H(S'), n =1
and f(m,z) = 2* — 23; the reader may easily check that the constant function 0 is an

isolated point of Z; which is therefore disconnected.

5. Recently, Church, Dancer and Timourian [CDT] made use of contractibility arguments
to show that a differentiable operator is equivalent by change of variable to a global cusp in
infinite dimensional space. The result in the present paper was motivated by our interest
in proving similar global normal forms for other operators [MST].
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