Regular level sets of averages of Nemytskii operators are contractible

Iaci Malta, Nicolau C. Saldanha and Carlos Tomei

Abstract: Let $H^1(S^1)$ be the space of periodic real functions with derivative in L^2 and $f: \mathbb{R} \to \mathbb{R}$ be a smooth function with no double roots. Then there is a diffeomorphism of $H^1(S^1)$ taking the set $Z = \{v \in H^1(S^1) | \int_{S^1} f(v(t)) dt = 0\}$ to a hyperplane. In this paper we state and prove a general version of this example. We consider a Banach space V of functions from some manifold M to $\mathbb{R}^{n'}$ and a function $f: M \times \mathbb{R}^{n'} \to \mathbb{R}^n$: under suitable hypothesis, there is a homeomorphism of V taking $Z = \{v \in V | \int_M f(m, v(m)) dm = 0\}$ to a closed subspace of codimension n.

1991 M. S. C., Primary: 47H30, 58B05, Secondary: 26E15.

Let $H^1(S^1)$ be the space of periodic real functions with derivative in L^2 . The set $Z = \{v \in H^1(S^1) | \int_{S^1} v^2(t) dt = 1\}$, at first sight, looks like a sphere: infinite dimensional topology (for which a good reference is [Ku]) tells us that the unit sphere is diffeomorphic to a hyperplane in Hilbert space. Actually, there is a diffeomorphism of $H^1(S^1)$ taking Z to a hyperplane. In this paper, we present a generalization of this example.

Let M be a compact manifold with a smooth Riemannian metric inducing a measure μ with $\mu(M)=1$. Let $C^{\infty}(M)$ be the Fréchet ring of smooth real valued functions on M. Set V to be a separable Banach space continuously included in $C^0(M)$ which is also a topological $C^{\infty}(M)$ -module (i.e., multiplication is continuous). Given a continuous function $f_n: M \times \mathbb{R} \to \mathbb{R}^n$, define $F_n: V \to \mathbb{R}^n$ to be the average of the related Nemytskii operator: $F_n(v) = \int_M f_n(m, v(m)) d\mu$. We further request that f_n admits continuous partial derivatives of all orders with respect to the second variable, whence F_n is smooth.

Let $\Pi_k : \mathbb{R}^n \to \mathbb{R}^k$ be the projection to the first k coordinates. We say 0 is a strong regular value of F_n if it is a regular value of the composition $F_k = \Pi_k \circ F_n$ for all k, $1 \le k \le n$. From now on, assume 0 to be a strong regular value of F_n . Since the ranges of F_k are finite dimensional ([L]), the levels $Z_k = F_k^{-1}(0)$ are nested closed manifolds of codimension k in V.

Theorem: The levels Z_k are contractible. Furthermore, there is a global homeomorphism Ψ of V taking each Z_k to a closed linear subspace of codimension k; Ψ can be taken to be a diffeomorphism if V is a Hilbert space.

For a function $g:A_1\times A_2\to B$ we write D_2g , say, for the derivative with respect to the second variable; thus, if A_2 and B are vector spaces, D_2g goes from $A_1\times A_2$ to $\mathcal{L}(A_2,B)$. The vector spaces \mathbb{R}^k always receive the Euclidean norm and, for a finite matrix A, $||A|| = \max_{|x|=1} |Ax|$.

The authors acknowledge support from MCT and CNPq, Brazil

Lemma 1: Let X be a topological space and $B^k(R)$ be the open ball of radius R around the origin in \mathbb{R}^k . Let $g: X \times B^k(R) \to \mathbb{R}^k$ be a continuous function, smooth in the second variable, satisfying |g(x,0)| < R/2 and $||D_2g - I|| < 1/2$. Then there exists a unique continuous function $h: X \to B^k(R)$ such that g(x, h(x)) = 0 for all $x \in X$.

This result is a variation of the implicit function theorem and its proof is similar.

Lemma 2: There are continuous functions $p_i: Z_k \to V$, i = 1, ..., k forming a basis of a complement of the tangent space $T_z Z_k$ for all $z \in Z_k$ and such that the derivative $D_2 \mathcal{F}_k$ of the function

$$\mathcal{F}_k : Z_k \times \mathbb{R}^k \to \mathbb{R}^k$$
$$(z, a) \mapsto F_k(z + \sum_i a_i p_i(z))$$

with respect to the second variable is the $k \times k$ identity matrix at all points of the form (z,0).

Proof: At any point z of Z_1 there is a vector $q_1(z)$ off the tangent space $T_z Z_1$; $q_1(z)$ can be chosen so that $DF_1(z) \cdot q_1(z) = 1$ (notice that there is no reason for q_1 to be continuous). Since F is smooth, there is a neighbourhood $W_z \subseteq Z_1$ of z such that $1/2 < DF_1(z') \cdot q_1(z) < 2$ for $z' \in W_z$. From the paracompactness of Z_1 ([L]), we can pick a locally finite refinement W_{z_λ} , $\lambda \in \Lambda$, of this covering of Z_1 and an associated continuous partition of unity Ξ_{λ} . Let $\tilde{q}_1(z) = \sum_{\lambda \in \Lambda} \Xi_{\lambda}(z)q_1(z_{\lambda})$: it satisfies $1/2 < DF_1(z) \cdot \tilde{q}_1(z) < 2$.

We now construct a continuous $\tilde{q}_2: Z_2 \to V$ such that the vectors \tilde{q}_1 and \tilde{q}_2 span a complement of $T_z Z_2$. Again, there is a vector $q_2(z)$ at each $z \in Z_2$ such that \tilde{q}_1 and q_2 span a complement. We can even pick q_2 so that the determinant of the real 2×2 matrix with columns $DF_2(z) \cdot \tilde{q}_1(z)$ and $DF_2(z) \cdot q_2(z)$ is 1. A similar construction with partitions of unity yields \tilde{q}_2 such that $1/2 < \det(DF_2(z) \cdot \tilde{q}_1(z), DF_2(z) \cdot \tilde{q}_2(z)) < 2$; notice that the determinant is linear in the second column, the first being fixed. Inductively, we construct \tilde{q}_i , $i = 1, \ldots, k$ and thus have a continuous basis for a complement of $T_z Z_k$. The derivative of F_k at z in this basis restricted to this complement is a continuous $k \times k$ invertible transformation A(z): the pull-back of the canonical basis of \mathbb{R}^k under A(z) gives us the required basis $p_i(z)$, $i = 1, \ldots, k$.

Lemma 3: The sets Z_k are path-connected and the homotopy groups $\pi_r(Z_k)$, $r=1,2,\ldots$, are trivial.

This lemma is the technical core of the paper and an informal description of the proof may be helpful. We must connect $z \in Z_k$ to a fixed base point $z_0 \in Z_k$: first decompose M in a large number L of roughly uniformly distributed sets W_{ℓ} , $\ell = 1, \ldots, L$. At time steps $1/L, 2/L, \ldots, 1$, substitute the original value of z by the desired value, prescribed by z_0 , in the sets W_1, W_2, \ldots, W_L . Since the required restrictions defining Z_k are given by integrals, the resulting path should not deviate much from Z_k . The main difficulty lies in controlling the error so that the path can be pulled back to Z_k uniformly on compact families of z's.

Proof: Let $h: S^r \to Z_k$ be a continuous map, $s_0 \in S^r$ be a base point and $z_0 = h(s_0)$. We construct a homotopy $H: S^r \times [0,1] \to Z_k$ of H(0) = h to the constant map

 $H(1) = h_1 : S^r \to Z_k, \ h_1(s) = z_0$; the case r = 0 corresponds to path-connectedness. Set $f_k = \Pi_k \circ f$.

From Lemma 2, $D_2\mathcal{F}_k(z,0)=I$ for $z\in Z_k$. Set $\epsilon>0$, $\epsilon<1/8$ such that $\|D_2\mathcal{F}_k(h(s),a)-I\|<1/4$ for all $s\in S^r$ and all $a\in \mathbb{R}^k$, $|a|<4\epsilon$. Let C be such that

 $|h(s)(m)| < \frac{C}{2}, |p_i(h(s))(m)| < \frac{C}{2k},$

for all $s \in S^r$, $m \in M$ and i = 1, ..., k. Let L > 8 be an integer satisfying

$$|f_k(m,c)| < \frac{L\epsilon}{4}, |D_2 f_k(m,c)| < \frac{L\epsilon}{4C},$$

for all $c \in \mathbb{R}$, |c| < C and $m \in M$. By uniform continuity, take $\epsilon_1, \delta_1 > 0$ such that

$$d(m,m') < \delta_1, |c - c'| < \epsilon_1, |c|, |c'| < C \Rightarrow \begin{cases} |f_k(m,c) - f_k(m',c')| < \epsilon/8, \\ |D_2 f_k(m,c) - D_2 f_k(m',c')| < \epsilon/8C. \end{cases}$$

Take $\delta > 0$, $\delta < \delta_1$, such that

$$d(m, m') < \delta \Rightarrow \begin{cases} |h(s)(m) - h(s)(m')| < \epsilon_1/2, \\ |p_i(h(s))(m) - p_i(h(s))(m')| < \min\{\epsilon_1/2k, C/4kL\}, \end{cases}$$

for all $s \in S^r$, $m, m' \in M$.

Decompose $M = \bigcup_{j=1,\ldots,J} \overline{U_j}$ into disjoint open sets U_j of diameter less than $\delta/2$: for example, take a finite set $\{m_1,\ldots,m_J\}$ whose complement contains no balls of radius $\delta/4$, and define $U_j = \{m \in M | j \neq j' \Rightarrow d(m,m_j) \leq d(m,m_{j'})\}$ (i.e., the Voronoi cells associated to $\{m_1,\ldots,m_J\}$). Split $\overline{U_j} = \bigcup_{\ell=1,\ldots,L} \overline{U_{j\ell}}$ into disjoint open sets $U_{j\ell}$ of equal measure. Roughly, the homotopy H replaces h by h_1 inside $W_\ell = \bigcup_{j=1,\ldots,J} U_{j\ell}$ in the time interval $[(\ell-1)/L,\ell/L]$.

Choose $\zeta > 0$ such that

- (a) for all j and ℓ , $\mu(U_{j\ell}^{+\zeta}) < (1 + \frac{1}{8L})\mu(U_{j\ell})$, where $U_{j\ell}^{+\zeta} = \{m \mid d(m, U_{j\ell}) < \zeta\}$,
- (b) for all j and ℓ , $\mu(U_{i\ell}^{-\zeta}) > (1 \frac{1}{8L})\mu(U_{j\ell})$, where $U_{i\ell}^{-\zeta} = U_{j\ell} \bigcup_{i' \neq j \text{ or } \ell' \neq \ell} U_{i'\ell'}^{+\zeta}$.

Denote by $\phi_{j\ell}$ a smooth partition of unity associated to the finite covering $\{U_{j\ell}^{+\zeta}\}$ so that $\phi_{j\ell}$ is 0 outside $U_{j\ell}^{+\zeta}$ and 1 in $U_{j\ell}^{-\zeta}$. We now construct a path $\tilde{\phi}$ of smooth functions from M to [0,1] joining the constant functions 0 and 1, for which intermediate functions are equal to 0 or 1 on most of M and their average inside large open sets is roughly t at time t:

$$\tilde{\phi}(t) = \sum_{\substack{j=1,\ldots,J\\\ell=1,\ldots,\tilde{\ell}-1}} \phi_{j\ell} + \tilde{t} \sum_{j=1,\ldots,J} \phi_{j\tilde{\ell}},$$

where $t \in [(\tilde{\ell}-1)/L, \tilde{\ell}/L]$ and \tilde{t} is a linear interpolation going from 0 to 1 as t goes from $(\tilde{\ell}-1)/L$ to $\tilde{\ell}/L$. Define $\tilde{H}(t)(s) = h(s) + \tilde{\phi}(t)(h_1(s) - h(s))$: this gives a smooth

deformation from h to h_1 which at intermediate times take us only slightly away from Z_k . Notice that, by convexity, $|\tilde{H}(t)(s)(m)| < C/2$ for all t, s and m.

Claim: $|F_k(\tilde{H}(t)(s))| < \epsilon$.

In an obvious notation,

$$F_k(\tilde{H}(t)(s)) = \left(\int_{\bigcup_{\ell < \tilde{\ell}} W_\ell} + \int_{W_{\tilde{\ell}}} + \int_{\bigcup_{\ell > \tilde{\ell}} W_\ell} \right) \left(f_k(m, \tilde{H}(t)(s)(m)) d\mu \right)$$
$$= A_{<} + A_{=} + A_{>}.$$

Clearly $|A_{\pm}| < \epsilon/4$ since the domain of integration has measure 1/L and $|f_k| < L\epsilon/4$. Also,

$$A_{<} = \sum_{j=1,...,J} \left(\int_{\bigcup_{\ell < \tilde{\ell}} U_{j\ell}} f_k(m, \tilde{H}(t)(s)(m)) d\mu \right)$$

$$= \sum_{j=1,...,J} \left(\int_{\bigcup_{\ell < \tilde{\ell}} U_{j\ell}} f_k(m, h_1(s)(m)) d\mu + E_{1j} \right)$$

$$= \sum_{j=1,...,J} \left(\frac{(\tilde{\ell} - 1)}{L} \int_{U_j} f_k(m, h_1(s)(m)) d\mu + E_{2j} + E_{1j} \right)$$

$$= \sum_{j=1,...,J} (E_{2j} + E_{1j}),$$

where the last integrals vanish since $h_1(s) \in Z_k$ and we are left with estimating the errors E_{1j} and E_{2j} . The functions $\tilde{H}(t)(s)$ and $h_1(s)$ coincide in $\bigcup_{\ell < \tilde{\ell}} U_{j\ell}^{-\zeta}$ and we therefore have

$$|E_{1j}| < 2\frac{L\epsilon}{4} \frac{1}{8L} \mu(U_j),$$

since $\mu(\bigcup_{\ell<\tilde{\ell}}U_{j\ell}^{-\zeta}) > (1-1/8L)\mu(\bigcup_{\ell<\tilde{\ell}}U_{j\ell})$ (by (b)) and $|f_k| < L\epsilon/4$; adding in j, $\sum_j |E_{1j}| < \epsilon/16$. For $m \in U_j$, $f_k(m,h_1(s)(m))$ differs by at most $\epsilon/8$ from $f_k(m_j,h_1(s)(m_j))$, for a fixed but arbitrary $m_j \in U_j$. Thus,

$$|E_{2j}| = \left| \int_{\bigcup_{\ell < \tilde{\ell}} U_{j\ell}} f_k(m, h_1(s)(m)) d\mu - \frac{(\tilde{\ell} - 1)}{L} \int_{U_j} f_k(m, h_1(s)(m)) d\mu \right|$$

$$\leq \left| \int_{\bigcup_{\ell < \tilde{\ell}} U_{j\ell}} (f_k(m, h_1(s)(m)) - f_k(m_j, h_1(s)(m_j)) d\mu \right|$$

$$+ \frac{(\tilde{\ell} - 1)}{L} \left| \int_{U_j} (f_k(m, h_1(s)(m)) - f_k(m_j, h_1(s)(m_j)) d\mu \right|$$

$$< \frac{\epsilon}{4} |U_j|$$

and $\sum_{i} |E_{2j}| < \epsilon/4$. Summing up, $|A_{<}| < 5\epsilon/16$.

On the other hand, since in most of the domain of integration of $A_{>}$ the functions $\tilde{H}(t)(s)$ and h(s) coincide, similar estimates yield $|A_{>}| < 5\epsilon/16$.

We now show how to correct \tilde{H} to obtain the desired homotopy H with values in Z_k .

Let $\tilde{p}(t,s)$ be the k-tuple of functions $\tilde{p}_i(t,s) = p_i(h(s)) + \tilde{\phi}(t)(p_i(h_1(s)) - p_i(h(s)))$ so that $|\tilde{p}_i(t,s)(m)| < C/2k$ for all t, s and m; similarly, we denote by p the k-tuple of functions p_i . Define

$$\tilde{\mathcal{F}}_k : [0,1] \times S^r \times B^k(4\epsilon) \to \mathbb{R}^k.$$

$$(t,s,a) \mapsto F_k(\tilde{H}(t)(s) + \sum_i a_i \tilde{p}_i(t,s))$$

Claim: $||D_3\tilde{\mathcal{F}}_k(t, s, a) - I|| < 1/2$, for all $t \in [0, 1]$, $s \in S^r$, $a \in B^k(4\epsilon)$.

For convenience, set

$$\alpha(m, v_0, w) = D_2 f_k \left(m, v_0(m) + \sum_i a_i w_i(m) \right)$$
$$\beta(m, w) = \sum_i b_i w_i(m),$$

where b is an arbitrary vector. Again, split M as in the previous claim to get

$$D_3 \tilde{\mathcal{F}}_k(t, s, a) \cdot b = \int_M \alpha(m, \tilde{H}(t)(s), \tilde{p}(t, s)) \beta(m, \tilde{p}(t, s)) d\mu$$
$$= (A'_{<} + A'_{=} + A'_{>}) \cdot b.$$

Recall that $t \in [(\tilde{\ell}-1)/L, \tilde{\ell}/L]$. The domain of integration of A'_{\pm} has measure 1/L and, for b of norm 1, the integrand is bounded by $\frac{L\epsilon}{4C}\frac{C}{2}$, yielding $||A'_{\pm}|| < \epsilon/8$.

Also.

$$\begin{split} A'_{<} \cdot b &= \sum_{j=1,\dots,J} \int_{\bigcup_{\ell < \tilde{\ell}} U_{j\ell}} \alpha(m,H(t)(s),\tilde{p}(t,s))\beta(m,\tilde{p}(t,s))d\mu \\ &= \sum_{j=1,\dots,J} \left(\int_{\bigcup_{\ell < \tilde{\ell}} U_{j\ell}} \alpha(m,h_1(s),p(h_1(s)))\beta(m,p(h_1(s))d\mu + E'_{1j} \cdot b) \right) \\ &= \sum_{j=1,\dots,J} \left(\frac{(\tilde{\ell}-1)}{L} \int_{U_j} \alpha(m,h_1(s),p(h_1(s)))\beta(m,p(h_1(s))d\mu + E'_{2j} \cdot b + E'_{1j} \cdot b) \right) \\ &= \frac{(\tilde{\ell}-1)}{L} D_2 \mathcal{F}_k(h_1(s),a) \cdot b + \sum_{j=1,\dots,J} (E'_{2j} \cdot b + E'_{1j} \cdot b), \end{split}$$

and thus

$$||A'_{\leq} - \frac{\tilde{\ell} - 1}{L}I|| \leq \frac{\tilde{\ell} - 1}{L}||D_2 \mathcal{F}_k(h_1(s), a) - I|| + \sum_j (||E'_{1j}|| + ||E'_{2j}||).$$

Since $||D_2\mathcal{F}_k(h_1(s), a) - I|| < 1/4$ we are again left with estimating the errors E'_{1j} and E'_{2j} . The integrands in the first and second lines coincide in $\bigcup_{\ell < \tilde{\ell}} U_{j\ell}^{-\zeta}$ and therefore

$$|E'_{1j} \cdot b| < 2 \frac{L\epsilon}{8} \frac{1}{8L} \mu(U_j),$$

the bound on the integrand being as above for $A'_{=}$; adding in j, $\sum_{j} ||E'_{1j}|| < \epsilon/32$. For $m, m' \in U_j$ and |b| = 1, the integrand for m differs by at most $\epsilon/8$ from the integrand for m'. Indeed,

$$\begin{split} |\alpha(m,h_{1}(s),p(h_{1}(s)))\beta(m,p(h_{1}(s)) - \alpha(m',h_{1}(s),p(h_{1}(s)))\beta(m',p(h_{1}(s)))| &\leq \\ &\leq |\alpha(m,h_{1}(s),p(h_{1}(s))) - \alpha(m',h_{1}(s),p(h_{1}(s)))| \, |\beta(m,p(h_{1}(s)))| + \\ &\quad + |\alpha(m',h_{1}(s),p(h_{1}(s)))| \, |\beta(m,p(h_{1}(s))) - \beta(m',p(h_{1}(s)))| < \\ &< \frac{\epsilon}{8C} \frac{C}{2} + \frac{L\epsilon}{4C} k \frac{C}{4Lk} = \epsilon/8. \end{split}$$

Hence, $||E_{2j}|| < \frac{\epsilon}{4}|U_j|$ and the rest of the proof proceeds as for the first claim.

From Lemma 1, we can solve the equation $\tilde{\mathcal{F}}_k(t,s,a) = 0$ in a, uniquely and continuously in t and s. For such a(t,s), set $H(t)(s) = \tilde{H}(t)(s) + \sum_i a_i(t,s)\tilde{p}_i(t,s)$; this completes the proof of the lemma.

In order to prove our main theorem, we need a couple of known results.

Proposition 1: Given a contractible connected smooth submanifold H' of codimension 1 of a separable Hilbert space H of infinite dimension, there is a diffeomorphism of H to itself taking H' to a closed subspace of codimension 1.

The proof of this proposition is entirely similar to the one given in [S] for the finite dimensional situation, $dim(H) \geq 4$.

Following [BH], we define a topological slicing submanifold of a separable infinite-dimensional Hilbert space H to be a closed bicollared topological submanifold Z of codimension 1 in H such that the complement of Z has two connected components. We now state Proposition 1.7 in [BH] suitably restricted to our needs.

Proposition 2: Let H be a separable infinite-dimensional Hilbert space and let Z be a topological slicing manifold in H. Then there exists a homeomorphism of H taking Z to a smooth slicing manifold.

Proof of the theorem: If V is a Hilbert space, the triviality of $\pi_r(Z_k)$ implies that Z_k is contractible ([Ku]). By induction, assume (after composing with a diffeomorphism) $Z_{k'}$, k' < k, to be closed subspaces (set $Z_0 = V$). By Proposition 1, there is a diffeomorphism

of Z_{k-1} taking Z_k to a closed subspace of codimension 1 which extends by a cartesian product to a diffeomorphism of V taking $Z_{k'}$, $k' \leq k$, to closed spaces, thus proving the theorem in this case.

In general, if V is a Banach space, use the fact that all separable infinite dimensional Banach spaces are homeomorphic ([Ka]) to identify under a homeomorphism the space V with some Hilbert space H. Again by induction, after composition with a homeomorphism, $Z_{k'}$, k' < k, are closed subspaces of H (set $Z_0 = H$). Now, Z_k is a topological slicing submanifold of the Hilbert space Z_{k-1} . Indeed, strong regularity of F_n at 0 implies that Z_k is a closed bicollared topological submanifold of codimension 1. Also, the complement of Z_k in Z_{k-1} has two components: the sign of the k-th coordinate of F_n indicates a splitting of the complement in two open sets. These are connected: we can always join an arbitrary point in the complement to a tubular neighbourhood of Z_k by some path contained in the complement and Z_k , as well as its tubular neighbourhood, are known to be path-connected. By Proposition 2, we can assume Z_k to be smooth after a homeomorphism in Z_{k-1} , which again extends to a homeomorphism in H. We now see that Z_k is contractible and Proposition 1 gives us a diffeomorphism of Z_{k-1} (and thus of H) taking Z_k to a linear subspace, completing the proof.

Remarks:

- 1. A similar theorem holds for functions v from M to $\mathbb{R}^{n'}$: such an apparently more general result can be reduced to our case by substituting M for the cartesian product $M \times \{1, 2, \ldots, n'\}$, where each connected component will take care of a coordinate of v. Notice that there is no requirement that M be connected.
- 2. Very little of the manifold structure of M is used. Manifolds with boundary, for instance, can be handled with minor alterations of the proof. More generally, the hypothesis could be weakened at the price of more cumbersome statement and proof.
- 3. It is essential in this construction that μ must have no atoms. In particular, the theorem fails rather trivially if M is replaced by a finite set and the degenerate case of manifolds of dimension zero must be excluded.
- **4.** Strong regularity is a necessary hypothesis. Consider $M = S^1$, $V = H^1(S^1)$, n = 1 and $f(m, x) = x^2 x^3$; the reader may easily check that the constant function 0 is an isolated point of Z_1 which is therefore disconnected.
- 5. Recently, Church, Dancer and Timourian [CDT] made use of contractibility arguments to show that a differentiable operator is equivalent by change of variable to a global cusp in infinite dimensional space. The result in the present paper was motivated by our interest in proving similar global normal forms for other operators [MST].

References:

- [BH] Burghelea, D. and Henderson, D., Smoothings and homeomorphisms for Hilbert manifolds, Bull. Amer. Math. Soc., 76, 1261–1265 (1970).
- [CDT] Church, P. T., Dancer, E. N. and Timourian, J. G., The structure of a nonlinear elliptic operator, Trans. Amer. Math. Soc. 338, no. 1, 1–42 (1993).
 - [Ka] Kadec, M. I., A proof of the topological equivalence of all separable infinite-dimensional Banach spaces, Funkcional Anal. i Prilozen, 1, 61–70 (1967).
 - [Ku] Kuiper, N. H., Variétés Hilbertiennes Aspects Géométriques, Publications du Séminaire de Mathématiques Supérieures, No. 38, Les Presses de l'Université de Montreal, 1971.
 - [L] Lang, S., Differentiable Manifolds, Addison-Wesley, Reading, MA, 1972.
- [MST] Malta, I., Saldanha, N. C. and Tomei, C., Morin Singularities and Global Geometry in a Class of Ordinary Differential Operators, to appear.
 - [S] Stallings, J. R., On Infinite Processes Leading to Differentiability in the Complement of a Point, 245–254, in Differentiable and Combinatorial Topology, a symposium in honor of Marston Morse, ed. Cairns, S. S., Princeton University Press, Princeton, NJ, 1965.

Iaci Malta and Carlos Tomei, Departamento de Matemática, PUC-Rio R. Marquês de S. Vicente 225, Rio de Janeiro, RJ 22453-900, Brazil

Nicolau C. Saldanha, IMPA

Estr. D. Castorina 110, Rio de Janeiro, RJ 22460-320, Brazil

e-mail: malta@mat.puc-rio.br, nicolau@impa.br, tomei@mat.puc-rio.br