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Abstract: We consider the set of all tilings by dominoes (2 x 1 rectangles) of
a surface, possibly with boundary, consisting of unit squares. Convert this set
into a graph by joining two tilings by an edge if they differ by a fiip, i.e., a 90°
rotation of a pair of side-by-side dominoes. We give a criterion to decide if two
tilings are in the same connected component, a simple formula for distances and
a method to construct geodesics in this graph. For simply connected surfaces,
the graph is connected. By naturally adjoining to this graph higher dimensional
cells, we obtain a CW-complex whose connected components are homotopically
equivalent to points or circles. As a consequence, for any region different from a
torus or Klein bottle, all geodesics with common endpoints are equivalent in the
following sense. Build a graph whose vertices are these geodesics, adjacent if they
differ only by the order of two flips on disjoint squares: this graph is connected.

0. Introduction

In this paper we consider tilings of a region consisting of unit squares by dominoes,
i.e., pairs of adjacent squares. Tilings of a rectangle of integral sides were counted by
Kasteleyn ([5]). More recently, Lieb and Loss ([6]) showed how to count tilings of general
regions by making use of determinants. Conway and Lagarias ([1]) studied the problem of
tiling a subset of R? with a given set of tiles, by group-theoretical techniques. Thurston
([9]) adapted these techniques to study domino tilings, producing a necessary and sufficient
condition for a simply connected region of the plane to be tileable by dominoes.

We are interested in studying 7', the set of all possible tilings of a fixed region. Given
a tiling, we perform a flip by lifting two dominoes and placing them back in a different
position: clearly, the two dominoes must form a square of side 2. Two tilings are adjacent in
T if we move from one to the other by a flip. Turn 7' into a graph by joining adjacent tilings
by edges and define connected components of 7' and distance between tilings in the usual
way. We obtain a very operational criterion (the equivalent Theorems 1.1, 1.2 and 3.1) for
two tilings to belong to the same connected component of T'; as a corollary, if the region is
simply connected, 7" is connected. Our techniques provide us with a fair understanding of
the combinatorial, topological and metric structure of T": thus, for example, each connected
component of T is a lattice and we describe in Theorem 3.2 a simple formula for the distance
between tilings and a characterization of shortest routes between points. In a sense to be
detailed in Section 3, all such routes are equivalent: a topological version of this statement
is that 7" induces naturally a CW-complex whose connected components are contractible
(Theorem 3.4). More generally, we consider quadriculated surfaces (defined in Section 4)
and obtain analogous results to Theorems 3.1, 3.2 (Theorem 4.1) and 3.4 (Theorem 4.3).
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1. Connected components of T

Let A be a finite subset of the lattice Z2. We say that two points of A are adjacent
if the distance between them is equal to 1. In this case we say they are connected by an
edge, the line segment joining them. The set A thus receives a graph structure. Closely
related to A is the set A C R2, the interior of the union of closed squares of side 1 (in the
usual position) with centers in A: we often identify A and Aand a point p of A with the
unit square whose center is p. The graph A is called connected (or simply connected) if A
is. Without real loss, we always assume A to be connected. A covering of A by edges is a
set of edges such that each point of A is the extremity of precisely one edge. Equivalently,
we speak of tilings of A by dominoes, each domino covering two unit squares connected by
an edge.

A point of Z? shall be called white (resp., black) if the sum of its coordinates is even
(resp., odd); A is therefore painted black and white like a chessboard. Edges of A connect
points of different colours. Clearly, if A admits a tiling, the number of white squares equals
that of black squares. In Figure 1.1, A is not tileable even though the colour condition is
satisfied.

Figure 1.1

Our first aim is to state a necessary and sufficient condition for two tilings to be in the
same connected component of 7. In order to do this, we define combinatorial invariants
for these components. We start with an explicit and easily computable description of such
invariants, which is then rephrased in the vocabulary of homology theory.

Acutof Aisa simple oriented polygonal line in A consisting of a sequence of edges
of squares and joining two points in the boundary of A. The flow of a tiling across a cut
is defined to be the number of dominoes crossing the cut, where the domino is counted
positively (resp., negatively) if its white square is to the left (resp., right) of the cut.

Consider a cut of A disconnecting it into two sets Ay and A, to the left and right of the
cut, respectively. The flow of any tiling of A across this cut is clearly given by the number
of white squares in Ay minus the number of black squares in Ay this must be equal to the
number of black squares in A, minus the number of white squares in A,. For a cut which
does not disconnect A, on the other hand, the flow may admit different values for different
tilings, as in Figure 1.2. It is easy to see, however, that for a fixed cut, adjacent tilings in
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Figure 1.2

T(A) have the same flow: these are therefore invariants for the connected components of
T. This is the easy part of Theorem 1.1 below.

Theorem 1.1: (combinatorial version) Assume A has genus n. Choose n disjoint cuts
in A which jointly do not disconnect A. Two tilings t; and t, are in the same connected
component of T' if and only if their flows across each of the n chosen cuts are equal.

In particular, if A is simply connected, T is connected. We will give two other equiva-
lent versions of this theorem, and will prove the last one, after constructing the necessary
tools.

Let us see how we can associate to two tilings t; and t; an element of Hl(fi; Z), which
we shall denote by [t; —t2]. We first build two CW-complexes A and A* with A C A C A~
and such that the inclusions are homotopy equivalences. For A, the 0-cells are the points
of A (the centers of the squares of A), the 1-cells are the edges between points of A, the
2-cells are the open unit squares with all vertices in A. For A*, the 2-cells are the squares
of A, the 1-cells are their sides and the 0-cells their vertices, where the common side of two
adjacent squares gives us only one 1-cell, as do the common vertices of adjacent squares
but common vertices of non-adjacent squares are not identified unless the two squares are
adjacent to a third one. In Figure 1.3, we show A (big dots), A (big dots and thin lines)
and A* (thick lines); notice that point p gives rise to two 0-cells in A*. For future use,

call A* the set of 0-cells of A*.

Figure 1.3

We shall be interested in a few related homology and cohomology moduli of the
above spaces. Since the two CW-complexes are homotopy equivalent to A, H(A%Z) =
H,(A;Z). By Poincaré-Lefschetz duality (See Sections 26 and 28 of [4]), on the other hand,
H, (A, Z)= H'(A*,0A*;Z). The equality is induced by the natural identification between
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Ci(A;Z) and CY(A*,0A*;Z), where C) and C* are the usual spaces of k-complexes or

cocomplexes.

Consider each edge (or domino) as a 1-cell in A and always orient it from black to
white; domino tilings correspond therefore to elements of Cy(A;Z) with boundary always
equal to the sum of all white vertices minus the sum of all black vertices. The difference
between two domino tilings ¢; and ¢2 is therefore a closed element of C1(A;Z): call the
corresponding homology class [t; — t3]. In Figure 1.4, we show how, given two tilings ¢,
and t3 ((a) and (b), resp.), we represent the class [t; — 2] in (c), consisting of a sum of

cycles in Hy(A,Z).

| t lU

(a) (b) (¢)

Figure 1.4

This homology class turns out to have the following properties:
(a) [ti —ta] =0,
(b) [t1 —ta] = —[t2 — tu],
) [t —ta] + [t — t3] = [t1 — t5],
) if t; and ¢y are adjacent, [t; —t2] = 0.

Properties (a), (b) and (c) are obvious. If ¢; and ¢, are adjacent, the cycle [t1 — t2] is
precisely the boundary of one of the 2-cells introduced in our construction, hence is exact,

and (d) follows.

We defined [t; — t2] as an element of Hl(fi; Z). From the duality stated above, we can
also think of [t; —t;] as an element of H'(A*, OA*;Z); let us see a direct way of interpreting
this cohomology class. In Figure 1.5.a we show the cocomplex corresponding to the tiling
in Figure 1.4.a: notice that the cocomplex is represented in A* while the complex was
represented in A. The way to obtain the cocomplex from the tiling should be clear: take
the 1-cells (edges) on boundaries of dominoes to zero and 1-cells crossing dominoes, when
oriented so that the white square is at the left, to 1. The cocycle corresponding to the
cycle in Figure 1.4.c is shown in Figure 1.5.b; notice that it is zero at the boundary and
therefore corresponds to a class in H'(A*, 0A*;Z), as claimed.

Consider the cocomplex in C'(A*;Z) taking any edge to 1 if oriented with white at
the left: the difference (t) between this cocomplex and four times the cocomplex associated
with a tiling ¢ is a cocycle since it takes the boundary of any square to zero; notice that
its value on JA* does not depend on t. Since A* is a closed disk with holes, the map
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induced by inclusion from H'(A*;Z) to H'(OA*;Z) is injective. The cohomology class
in H'(A*;Z) corresponding to (t) does not therefore depend on the tiling t. In Figure
1.5.c we represent (t) for the tiling in Figure 1.4.a: in order to recover the tiling from the
cocomplex, place central edges of dominoes over the triple arrows; in particular, different
tilings correspond to different cocomplexes. We shall see the uses of the cocycle (t) in the
next section.

(a) (b) (¢)

Figure 1.5

To a cut T we associate an element [[] € H'(A,Z) = H'(A,Z) as follows. Each
element of C (for A) is mapped to an integer: a 1-cell which does not cross I' is taken to
0; if the 1-cell crosses I, it is taken to +1, according to orientation (if the 1-cell crosses I'
from right to left it is taken to 1). This map is a cocycle, i.e., the boundary of a 2-cell is
taken to 0. This is the usual construction of a cohomology class from a curve such as a cut.
Since the cohomology of a disk with n holes D is known to be generated by the classes of
n such curves not disconnecting D, the n cuts mentioned in Theorem 1.1 form a basis of
H'(A,Z). Notice that the flow of a tiling t across a cut I' is [[')(¢); the difference between
flows for two tilings ¢; and t2 is the usual pairing (between cohomology and homology)
[['] —~ [t1 — t2]. In particular, if [t; — t2] = 0, the flows of ¢; and 3 coincide on any cut.

Theorem 1.2: (homological version) The tilings t1 and t; are in the same connected
component of T if and only if [t; — t2] = 0.

Both versions, Theorems 1.1 and 1.2, are equivalent. Indeed, from the remarks above,
triviality of the class [t; —t3] is equivalent to the equality of the corresponding flows across
the cuts mentioned in Theorem 1.1.

2. Height sections

We begin this section by discussing height functions, originally presented by Thurston
([9]). Height sections, which are appropriate extensions of the concept of height functions,
are the main tools in our proofs of Theorems 3.1 and 3.2. The height function (or section)
corresponding to ¢ is in fact obtained by integrating (¢); we nevertheless give an elementary
and independent description of these objects.

Consider a (parametrized) polygonal line consisting of edges of unit squares with
vertices in (Z +1/2)%. We assign numerical values to the parametrized vertices by a sort of
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integration process: in particular, it may happen that to a point on the line correspond two
different values. Take an initial value (say 0) and assign it to the origin of the polygonal
line. When walking along an edge with a white (resp., black) square to its left, add (resp.,
subtract) 1 to the value at the starting point of the edge in order to get the value at the
endpoint. Notice that if the line joins P to () and the integration process starting with a
for P leads to b for ) then integration from ) to P along the same line starting with b
yields the same value a at P.

If the endpoint coincides with the starting point of the line, how do the two values
assigned to this point relate? It is not hard to see that we add (resp., subtract) 4 each
time we surround a white (resp., black) square counter-clockwise, with reversed signs
for opposite orientation. By the obvious additivity properties with respect to paths of
integration, the value obtained when returning to the original point is the following. For
each white (resp., black) square, take 4 (resp., —4) times the winding of the path around
it and sum over all squares.

Thus, the value mod 4 at the endpoint does not depend on the integration path, and
is given (up to a global additive constant) by the function ¢ : (Z + 1/2)* — Z/(4) defined
as ¢(z,y) = 01if |z] =2 —1/2 and |y|] = y — 1/2 are both even, ¢(x,y) = 1 if [z] is
odd and |y]| is even, ¢(z,y) = 2 if |z] and |y]| are both odd, ¢(z,y) = 3 if |z] is even
ly| is odd. However, integration along the boundary of a domino, or, more generally, of a
simply connected tileable region assigns the same value to the starting point and endpoint.
Notice that the situation above is very similar to two other more familiar constructions:
the calculation of the area of a planar region by Green’s Theorem and the computation of
a complex integral by adding residues.

We now discuss height functions and their relation to tilings in the case when the
closure of A is a closed disk. Assume therefore that the closure of A is a (topological)
closed disk. Let A* C (Z + 1/2)* be, as above, the set of vertices of squares in A. Choose
a basepoint po = (zg,y0) € A*, po in the exterior boundary of A, and a base value vy € Z
so that vg mod 4 = ¢(xo,yo). Given a tiling ¢, we define a function 6 from A* to Z at a
typical point p by integrating along any path contained in boundaries of dominoes, starting
from the basepoint py with initial value vy = 6(po) and reaching p with value 6(p). This
function does not depend on choices of paths. Indeed, as in the paragraph above, 6 is
locally well defined; our hypothesis on the global topology of A guarantees that 6 is also
globally well defined. Given any path contained in boundaries of dominoes joining points
p1 and pz, integration along this path starting with 6(p; ) yields 6(p2 ). Also, different choice
of basepoint or base value produce the same height function up to an additive constant
in 47Z. We call 6 the height function of t; in Figure 2.1 we show an example of a domino
tiling and the corresponding height function.

Two points in A* are called adjacent if the distance between them is 1 and the segment
joining them is in the closure of A. It is easy to see that a height function satisfies the
following properties:

(a) 6(z,y) mod 4 = ¢(z,y),
(b) the values of § at adjacent points never differ by more than 3,
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Figure 2.1

c) the values of § at points which are adjacent along a segment contained in the boundar
p J g g y
of A always differ by exactly 1.

Conversely, given a function 7 satisfying conditions (a), (b) and (c¢) as above, we
obtain a tiling t as follows: join two adjacent points in A* if the values of 7 at such points
differ by precisely 1, thus obtaining the contours of the dominoes of ¢. It remains to prove
that the construction actually gives rise to a tiling by dominoes. Indeed, each square of A
is surrounded by four points of A* and from conditions (a) and (b) exactly three of these
sides are drawn in the above process: the fourth one (which cannot lie on the boundary,
by (c)) indicates which way the domino covering our square goes. Furthermore, the height
function € corresponding to t is equal to 7, up to an additive constant in 47Z: these two
constructions are the inverse of each other. We thus defined a bijection between the space
of tilings T' and the class of functions satisfying the three above conditions, i.e., height
functions, modulo additive constants in 47.

Let us consider how to extend these concepts to the general case. First, there can be
nasty points in (Z + 1/2)? with all four edges arriving at it being part of the boundary of
A: as we have already seen in the construction of A*, such a point ought to be interpreted
as two points in A* with adjacency relations defined in the obvious way that assures the
local good behaviour of A and A*. Of course, height functions are free to assume different
values at these two points.

A more serious problem comes from the consistency of 6 along boundaries if A is
not simply connected. If inside one of the holes of A the number of white squares is
different from the number of black squares, no height function can exist because we get
multivaluedness when following the boundary. Still, it is easy to construct such regions
which admit tilings, as in Figure 1.2.

In cohomological terms, it is clear what is going on. The height function 6 was obtained
by integrating (t): this was possible because this cocycle is exact, i.e., corresponds to the
cohomology class 0 in H'(A*;Z). In other words, (t) is the coboundary of §. Now, the
cohomology of a disk is trivial but if A is not simply connected H!'(A*;Z) is non-trivial
and it may well happen (as in the example mentioned in the previous paragraph) that the
cohomology class of (t) is non-zero.

What we need is not height functions but height sections of a certain fibre bundle
with base space A* and fibre Z. In this bundle, a fibre is not an additive group: there is
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no natural 0 nor addition on each fibre. We are allowed to add an integer to an element
of a fibre (thus getting another element of the same fibre) or to subtract elements of the
same fibre (thus getting an integer). We are also allowed to compare elements of the same
or neighbouring fibres, but otherwise we are not allowed to compare elements of different
fibres. The congruence class mod 4 of an element of a fibre is, however, well defined.

We begin the construction by choosing a basepoint py in A*. Consider next the set
P of all paths in A* going from py to some other point of A*, i.e., functions ¢ from sets
of the form {0,1,...,m} to A* such that £(0) is the basepoint and &(¢) and £(¢ + 1) are
always neighbours in A*. Our bundle shall be obtained from P x Z by a quotient: the
projection from P x Z to A* just takes a pair (path, integer) to the endpoint £(m) of the
path. Two pairs (£1, k1) and (&2, k2) are identified if the following conditions hold. First,
€1 and & must have the same endpoint. Second, consider £ the path obtained by following
&1 and then following &; backwards; let £ be the sum of the windings of ¢ around white
squares not in A minus the sum of the windings of ¢ around black squares, again not in A:
identify the two pairs if k& — ky = 4¢. This defines the desired height bundle, or ‘H. The
allowed operations on this bundle have the obvious definitions in terms of representatives
of the equivalence classes.

Another essentially equivalent interpretation for H is as a (not necessarily connected)
covering space for /Al, or, equivalently, A*. Indeed, take the fibres as defined over A* and
extend them to edges of A* by the provided identification between neighbouring points.
Finally, define fibres over the squares of A* in the essentially unique possible way: it is
always possible to do it for each such square because the four identifications around it are
compatible. The name ‘height section’ should generate no confusion: it is always to be
understood as a section of H restricted to A*.

We construct the height bundle for the region shown in Figure 2.2(a), in a manner
which is slightly different from the one described above. Start by drawing cuts as indicated,
and consider the sub-CW-complex B of A*, obtained by removing the 1- and 2-cells
intersecting the cuts. Take now the cartesian product B x Z. This is necessarily isomorphic
to the restriction of H to B since B is contractible. In order to construct 'H, it suffices to
extend this bundle to the missing cells. This shall be done by choosing appropriate additive
shifts between consecutive fibres, indicated again in Figure 2.2(a). How are those shifts
obtained? Consider, for example, the two paths & and &; in the picture; the equivalence
relations defined in the construction of H yield (&1, —4) = (£2,0). Of course, a different
choice of cuts would give rise to isomorphic bundles. To construct an isomorphism, start
by identifying (arbitrarily, but respecting orientation) a pair of fibres with the same base
point and extend (in the only possible way) the identification to the entire bundle. It is
only necessary to check that the above construction yields a well defined map: this follows

from the definition of the bundles. Thus, from now on, we speak of the height bundle over
A*.

We define the height section corresponding to a tiling ¢ by integration just as we did
for height functions: the bundle H is constructed in such a way that the definition of
the section does not depend on choices of paths. Indeed, for two arbitrary paths along
boundaries of dominoes with same starting point and endpoint, integration yields two
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Figure 2.2

values at the endpoint which are identified in the construction of the bundle. As with
height functions, basepoint and base value contribute only with a constant in 4Z. Figure
2.2(b) shows an example of a tiling and its height section; Figure 2.2(c) shows how we
would write the same height section with a different set of cuts. The large difference
between numbers on neighbouring points at opposite sides of cuts does not correspond to
a jump of the height section: remember that such neighbouring fibres are attached with an
additive shift. Again, a different choice of cuts would not have changed the height section
itself, but only the notation employed.

A height section satisfies conditions (a), (b) and (c¢) with the appropriate invariant
interpretation: in conditions (b) and (c), the difference between values of the section
at neighbouring points is to be computed using the identification of neighbouring fibres
intrinsic to the definition of the bundle, and not as a difference between the (cut-dependent)
integers used in our examples. We again have a natural bijection between 7' and the class
of sections of H satisfying the three conditions, modulo constants in 47Z.

We now list some convenient properties of height sections. The difference of two
height sections is a function with domain A* and values in 47Z; this is well defined up to an
additive constant. Consider a cut I' connecting two points z, and z; in different boundary
components of A*. Let f; and f; be the flows across I' of two tilings ¢; and t;. We claim
that

O2(xp) — O1(xp) — O2(xa) + b1 (2a) = —4(f2 — f1):

From the previous remark, the left hand side is a well defined integer. Indeed, the function
Oy(x) — 01(x) — 63(xs) + 61 (xa), from the cut I' to the integers, can be computed, starting
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at © = x, (where it is clearly equal to 0) and ending at @ = 3 by the integration processes,
yielding the result. Also, two tilings are adjacent iff their corresponding height sections
differ at a single (interior) point by +4 once the additive constants have been chosen so
that they agree at a boundary point. Finally, the maximum or minimum of two or more
height sections is again a height section, since properties (a), (b) and (c) are preserved.

It is clear from property (c) of height sections (in particular, functions), that if two
height sections for the same region agree at one point of the boundary, they agree on
the entire connected component of the boundary containing that point. We may thus
assume without loss that height sections always agree on the exterior boundary. Our main
interest, however, is on relating height sections for tilings ¢; and ¢, with [t; — t3] = 0. In
this case, the corresponding height sections agree on the entire boundary. Indeed, consider
two sections 6y and 6, which agree on the exterior boundary. The identity above, which
relates the values of the sections at one point of the boundary to the values at another
point, immediately yields the equality of the sections at all boundary components, since
flows for both tilings are equal, by the equivalence between Theorems 1.1 and 1.2.

There is then a lattice structure (and a partial order) on T(A), induced by the cor-
responding order on height sections: remember that height sections are assumed to agree
on the exterior boundary.

3. Distances in T

We state yet a different version of Theorems 1.1 and 1.2.

Theorem 3.1: (height section version) The tilings t; and ty are in the same connected
component of T if and only if their corresponding height sections 6, and 6, coincide on
the whole boundary.

As shown at the end of the previous section, [t; —t3] = 0 iff the corresponding height
sections agree on the whole boundary: the equivalence between Theorems 1.2 and 3.1 is
now clear. A corollary of this theorem is that each connected component of T is a lattice,
with a maximum and minimum height sections. The non-trivial part of Theorem 3.1
reduces therefore to the following: there always exists a path (in 7'(A)) joining two height
sections coinciding on the boundary of A*, in which consecutive height sections differ at
a single point.

Theorem 3.2: Suppose the tilings t; and t; are such that their corresponding height
sections 0, and 6, coincide on the whole boundary. Then t, and t; are in the same
component of T(A) and

At )= 5 S 16:(p) — 6a(p)].

pEA*

Also, the diameter of a connected component of T(A) is the distance between the minimum
and the maximum of all height sections in that component.

As we shall see, Theorem 3.1 and Theorem 3.2 follow easily from the lemma below.

Lemma 3.3: Let 6; < 6, be two height sections coinciding on the boundary of A*. Then
there exists 63, 83 adjacent to 0y, with 6; < 03 < 6.
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Proof:

To satisty adjacency, the new section #3 must be constructed as follows: choose a
point pg in A* and define 65(p) = 61(p) for p # po and O3(po) = 01(po) + 4. The section 65
is a height section iff conditions (a), (b) and (c¢) hold. Condition (a) is trivially satisfied.
Condition (¢) is satisfied provided pg lies in the interior of A*. Condition (b) holds if and
only if pg is a local minimum of #;. Indeed, local minimality and condition (a) guarantee
that, if p is a neighbour of pg, 61(p) — 61(po) = 1 or 3. Thus, 85(p) — O3(po) = —3 or —1.
Finally, to obtain 6, < 65 < 62, we must choose py with 6;(pg) < 02(po). We only have to
prove then that such a point py exists. Consider that (non-empty) part B of the domain
where 65 — 0, is maximum; we will see that there must be such a py in B.

When height sections are just height functions, select py so that 6 (pg) is minimum in
B. We prove that pg is a local minimum in A*. Let p be a neighbour of py. If p is in B,
we have 01(p) > 61(po) by hypothesis. If p is not in B, let x; = 6;(po); conditions (a), (b)
and (c) allow two possible values for each of 6;(p): call these y; and z; with y; < z; < z;.
Clearly, zg — 21 = x2 — 21y = y2 — y1 and, since p & B, 0y(p) — 61(p) < 62(po) — 61(po),
whence 61(p) = z1 and 62(p) = y2, proving our claim in this second case.

The difficulty in the proof for sections lies in the fact that it doesn’t make sense to look
for global minima. From the previous arguments, however, a local minimum in B (which is
necessarily a local minimum in A*) is what we need. Suppose by contradiction that no such
local minima exist: every point in B has a neighbour where 6, is smaller. Since B is finite,
there exists a cycle po,p1,...,pN—1,PN = po of points of B with 6;(p;) > 61(piy1). Assume
without loss that the cycle is simple (i.e., has no self-intersections), turns counterclockwise
in the plane and encloses minimum area. It is clear that this minimum area is greater than

1.

We claim that 61(p;) — 61(pi+1) = 1. Indeed, if this is not the case, the difference
equals 3. The edge joining p; and p;4+; is the central edge of a domino which is common to
both tilings ¢; and ¢5. The two points to the left of the oriented segment p;p; 11 also belong
to B, and we may therefore insert these two points between p; and p;4; thus obtaining a
new cycle with smaller enclosed area. If the new cycle is not simple, take a simple subcycle
of it.

Also, the segments p;p;1+1 and p;t1pi4+2 form a right angle, since otherwise we would
have a difference of 3 on one of the two edges. Finally, we cannot have p;, p;+1, pito
and p;43 vertices of the same square traversed counterclockwise: otherwise, omit p;+; and
pi+2 to get a cycle with smaller area. It follows that the polygonal line joining midpoints
between consecutive points of the cycle never turns left and this contradicts the fact that
the cycle turns counterclockwise. u

Proof of Theorems 3.1 and 3.2:

This lemma (plus induction) tells us that we can move from a smaller to a larger height
section by flips; in particular, we can go from any height section to the maximum, thus
proving the connectivity of classes of height sections with given boundary values (Theorem
3.1). The inequality d(t1,t2) > iEPEA* |61(p) — B2(p)| is an obvious consequence of the
fact at the end of the previous section relating height sections of adjacent tilings. As to
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the non-trivial half of the distance formula, a shortest path is to move from one section to
the maximum of the two and then to the other; we could equally well have first moved to
the minimum and the distance would be the same. Our claim about the diameter follows
from the distance formula; this, of course, finishes the proof of Theorem 3.2. m

It is clear from the proof above that we know which flips to perform in order to get
closer to a tiling t; starting from a tiling ¢1: simply compute both height sections and look
for local minima of t; below t5, or local maxima of t; above t5. In this sense, there is a
local characterization of the shortest paths in the graph T'(A).

Some of these paths should clearly be considered equivalent. For instance, let ¢; and
tz be the tilings (a) and (d) in Figure 3.1: the two paths (abd) and (acd) are such an
example. We render this notion precise by turning 7' into a CW-complex. The 0-cells
are just the elements of 7" and the 1-cells connect adjacent tilings so that the notion of a
connected component of T remains unaltered. The 2-cells are glued along squares whose
edges are two independent flips (i.e., ocurring on disjoint squares); in Figure 3.1, there is
a 2-cell whose boundary is composed of the four 1-cells connecting the tilings in (a) to
(b), (b) to (d), (d) to (¢) and (c) to (a). Similarly, 3-cells correspond to three independent
flips, and k-cells to k& independent flips. The above mentioned equivalence of paths is of
course homotopy and it turns out that all shortest routes between tilings are homotopic,
as follows from the theorem below.

Figure 3.1

Theorem 3.4: FEach connected component of T is contractible.
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Proof:

For an arbitrary tiling to (i.e., a 0-cell) we contruct a homotopy from the identity to
a constant function taking the entire connected component to t,. Start by those points
which are furthest from ¢¢: from each such point ¢ there are a few (say k) possible flips. All
these flips must necessarily approach the base tiling and must be independent; ¢ is therefore
the vertex of a k-cell corresponding to these k flips and it is easy to deform this cell, a
k-dimensional cube, onto the walls of the cell that do not touch ¢ without moving these
walls. Repeat the process for all tilings different from ¢y, taking distances in decreasing
order. m

4. Quadriculated surfaces

In this section we generalize the constructions and results of the previous sections to
the situation where A* is not a subset of the plane but a quadriculated surface. The idea of
a quadriculated surface is very natural but its definition is somewhat technical: start with
a finite collection of squares of unit side and glue certain pairs of sides (taking orientation
of the sides into account) in such a way that the following two conditions hold. First, two
sides of the same square are never identified. Two vertices of different squares are identified
if they are the corresponding extremes of identified sides. Given an edge of a square and
an incident vertex we can either replace the edge by the other edge on which the vertex
lies or, if the edge is identified with an edge of some other square, pass to that edge and
to the corresponding vertex. Performing these two operations in alternation, we see that
a vertex in the surface (i.e., after identifications) corresponds to a sequence of vertices of
squares; it is clear that such a sequence is either finite (if we reach the boundary, i.e.,
a non-identified side) or periodic. Our second condition is that periodic sequences must
have length 4; intuitively, this says that the angles at vertices of squares are 7/2 so that
it is impossible to surround a point with less than or more than 4 squares. Of course, the
surface may be non-orientable or not consistently colourable in black and white. As in the
planar case, we consider only connected surfaces.

We can easily construct a quadriculated torus and a quadriculated Klein bottle by
identifying opposite sides of a (quadriculated) rectangle in the usual way. More generally,
any quadriculated torus can be constructed by taking the quotient of R? by a sublattice
of Z?; the construction of the general quadriculated Klein bottle is similar. It is easy
to see that these are the only quadriculated surfaces with no boundary. Quadriculated
cylinders and quadriculated Mobius bands are even easier to construct: start with any
simply connected region in the plane and glue along congruent boundaries.

As for Euclidean manifolds, it is easy to define a developing map ([10]) from the
universal cover of a quadriculated surface to the plane. Similarly, define the holonomy of
a quadriculated surface: it is a homomorphism from the fundamental group of the surface
to the group of isometries of Z2. If the surface is a topological disk, it has trivial holonomy
and may be thought of as some kind of Riemann surface over Z2.
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The notion of a domino tiling of a quadriculated surface is clear, as is the notion
of a flip. As in the previous simpler situation, we want to characterize the connected
components of 7.

We now describe the correct generalization of [t; —t2], (t) and height sections. The cell
complexes A and A* are easily defined, as are A and A*. Consider the original homological
construction of [t; — t3]: we draw an edge for each domino of either tiling, orienting those
in t; from black to white and those in ¢5 from white to black. The obvious difficulty in
generalizing this construction is: there are no white or black squares now, and it may
even be impossible to assign colour globally in a coherent way. This makes it clear that
H,(A*;Z)is not the right place to try to define [t; —t3]: we must instead use homology with
local coefficients. Homology and cohomology with local coefficients are briefly described
for the situation of interest in the Appendix to this Section. More precisely, let Z; be a
Z-bundle over A* constructed as follows: put in Z fibres over each square and glue fibres
on neighbouring squares by identifying k£ on one fibre with —% on the other. The gluing
instructions provide us with fibres over edges and create no obstruction towards defining
the fibre over a vertex because of our second condition on quadriculated surfaces; notice
that on each square there is a privileged generator for the fibre, originally labeled 1, which
we call positive. A more global characterization of Z; is that its fibre twists along a given
closed curve in A* iff this curve passes through an odd number of squares. If we try to
colour squares alternatedly black and white we find that this is similar to constructing a
section of Z;: in particular, A* is bicolourable iff Z is trivial. It is now clear that our
definition of [t; — t2] makes sense as an element of Hy(A; Z;): edges of any tiling ¢ (i.e.,
edges connecting the centres of the two squares composing a domino) are oriented so that
their boundaries come out as two points with positive coeflicients.

The cohomological construction of [t —t2] or (t) is of course similar but it has to be per-
formed with different coefficients, as is to be expected from duality anyway. Let therefore
Z9 be a Z-bundle constructed over A* as follows: first put in fibres over each square as be-
fore, but now each generator of the fibre corresponds to a possible orientation for the square.
Glue fibres on neighbouring squares so that orientations don’t match (thus constructing
the fibres over edges); again, our second condition on quadriculated surfaces states that
the fibre is well defined on vertices. Equivalently, Z; twists along a given closed curve iff
the curve inverts either colour or orientation, but not both. The (very general) version of
Poincaré duality for sheaves (as in [8]) guarantees that Hi(A*; Z1) = H'(A* 0A*; Z,);
we provide a sketch of a direct proof of this isomorphism in the Appendix. Also, over any
edge of a square, there is a natural correspondence between orientations for the edge and
generators of the fibre of Z; over the edge: choose an adjacent square, orient the square,
and take the corresponding generator of the fibre of Z; to correspond to the counterclock-
wise orientation for the edge. It is now easy to define (t) € C'(A*;Z;): for edges not
crossing dominoes, take the corresponding generator; for edges crossing dominoes, take
—3 times the same generator. Again, this gives us an element of H'(A*; Z5) whose re-
striction to the boundary does not depend on the tiling ¢ but it is important to notice
that since the map induced by the inclusion from H'(A*; Z;) to H'(0A*; Z5) is usually
not injective, this does not mean that the cohomology class of (t) does not depend on
t: in Figure 4.1, the two tilings of the torus produce (t)’s which are not cohomologous in
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H'(A*; 2,) = Z* (notice that Z, is trivial). On the other hand, the hypothesis [t; —t3] = 0
(in Hi(A*; Z1) = H'(A*,0A*; Z,)) guarantees that (t;) and (¢;) are cohomologous (in
HY(A*; 29)).

(a) (b)

Figure 4.1

As an additional example, consider the cylinders in Figures 4.2(a) and (b) and the
Mobius bands in Figures 4.2(c) and (d). In (a), Z; and Z; are both non-trivial and
Hi(A; Z,) (which by Poincaré duality equals H'(A*,0A*; Z,)) is trivial (as discussed in
the Appendix); all tilings are therefore homologous and the reader can easily check that T
is connected. In (b), Z; and Z; are both trivial and H;(A; 21 ) = Z; there are 4 connected
components in T' classified by [t; — t2]. In (¢), 2 is trivial, Z; is not and H1(A; Z1) = Z;
T has 3 components in (c), again classified by [t; — t2]. Finally, in (d), Z; is non-trivial,
Zy is trivial, Hi1(A; Z1) = 0 and T is connected.

a [

(¢) (d)

Figure 4.2

Our next step is to construct the height bundle H and the height section 6 in it;
examples will be given in Figure 4.3. It is convenient to construct both simultaneously
and, unlike the previous simpler situation of planar regions, the structure of H depends to
a certain extent on the tiling ¢. The fibres of H are to be copies of Z with no distinguished
zero and not even a privileged orientation defining order on fibres; we are allowed to add to
an element of a fibre of H an element of the corresponding fibre of Z5 and we are allowed
to compare for ‘equality’ elements of neighbouring fibres. In order to build ‘H and 6, take
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Z5 on the vertices of A* and ‘forget’ the zero section and the exact way of identifying
two neighbouring fibres: we shall take the old zero section to be 6 (by definition) and glue
neighbouring fibres with an additive shift. This shift is described, of course, by (t), so that
(t) is the ‘derivative’ of 6 by construction. As before, H can be thought of as a covering
space over A*.

Since H is not the same for all ¢ we have to explain how we can ever compare different
height sections. The first observation is that the structure of H depends on the cohomology
class of (t) in H'(A*; Z5) only. Indeed, if (¢;) and (¢2) are cohomologous, their difference
is by definition a coboundary and therefore a sum of coboundaries of ‘delta functions’, i.e.,
functions with support given by a single vertex. Construct a discrete path from #; to ¢z by
adding one such ‘delta function’ at each step. The intermediate cocomplexes in this path
usually do not correspond to tilings at all but they still allow for the construction of H
(and even 6) at intermediate steps. The isomorphism of consecutive height bundles (but
not sections) is clear and our claim follows. If, furthermore, [t; — t2] = 0 (as an element
of H'(A*,0A*; Z,)), the ‘delta functions’ are all in the interior of A* and, for the same
procedure of taking intermediate bundles and sections, consecutive sections coincide on
the boundary. Thus, in this case, 8; and 65 are sections coinciding on JA* of the same
bundle H. We are thus ready to compare ¢, and 65 in the relevant case [t; —t5] = 0 if JA*
is non-empty, by the connectedness of A*. If A* is empty, however, we have to consider
if the above construction of intermediate bundles and sections introduces any ambiguity in
the identification of the two height bundles. For planar regions, height sections were well
defined up to a constant. If Z5 is trivial, i.e., if it admits at least one non-zero section, the
same thing happens. Otherwise, height sections are well defined given H: the difference
between two of them (obtained by integration from the same tiling) is a section of Zj,
hence 0. Thus, if 0A* is empty and Z5 is non-trivial, there is no ambiguity in comparing
height sections, but if JA* is empty and Z; trivial we are free to add constants (i.e.,
sections of Z3) to any of the two sections. In any case, [t; — t2] = 0 if and only if the
height bundles for ¢; and ¢; are isomorphic and the height sections ¢; and 65 coincide on
boundaries.

We should be able to characterize height section by properties similar to (a), (b) and
(c¢) above. Properties (b) and (¢) do not change: just remember to interpret them as
taking place inside H (and not some cut-dependent system of coordinates you may want
to use). Property (a), however, has to be rephrased a bit more carefully. Inside each fibre
of 'H there exists a class of elements with the ‘right’ congruence mod 4, i.e., those elements
which differ from the height section used for the construction of H by a multiple of 4. We
call the union of such subsets Hgy, a subset of H; Hy is not quite a fibre bundle however
since it is defined only over A* and can not be naturally extended to A* since the height
section itself is only defined over A*. Property (a) now says that a height section must
assume values in Hg. It should be clear that again these properties characterize height
sections.

In Figure 4.3 we show the height sections for the four tilings in Figure 4.2. Notice how
simple it 1s to construct such height sections: work as if the region were planar and at the
end the identifications will be automatically provided. In these examples a value x for the
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height section on a point at the left cut corresponds to a value of 1 — z, x, —3 — = and =
in Figures (a), (b), (¢) and (d), respectively, for the corresponding point at the right cut.

3_ 2 3 2 3

0 1 0 1 0 1, 4 1, 0
3 2 -1 =2 -1 2 3 2 -1
0__1 0 1 01 0 1 0
(a) (b)
-4 -3 —4 -3 0_1 0 1 0
-1 -2 -1 -2 3 2 -1 2 3
01 0 1 0__1 0 1 0
(c) (d)
Figure 4.3

The Moébius band in example (¢) in Figure 4.3 illustrates an interesting point when
compared to the tilings in Figure 4.4. Here, the cohomology group H'(A*; Z;) is isomor-
phic to Z/(2). As discussed, the structure of H depends on the cohomology class of (t) in
H'(A*; Z5) only. However, two different tiling #; and ¢, for this region induce cohomology
classes (t1) and (t3) differing by a multiple of 4 in H'(A*; Z;) and being therefore equal.
The height section if Figure 4.4(a) does not appear at first to be in the same bundle as
Figure 4.3(c) but an appropriate renaming of the fibres as in 4.4(b) shows that, as pre-
dicted, the bundles are indeed isomorphic (they have the same gluing instructions) even
though the subsets H, are different in the two cases. Similarly, the height section in 4.4(c)
can be renamed as in 4.4(d) to fit inside the bundle for 4.3(c) but the values of the section
at the boundary are different.

0_ 1 0 1 -2_-1 -2 -1

~1 2 -1, 2| -3 0 -3 0

o_ 1 0 1 -2 -1 -2 -1
(a) (b)

45 4 5 0_ 1 0 1

3, 23 2 -1 -2 -1 -2

0o_ 1 0 1 —4_-3 -4 -3

Figure 4.4
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This shows that if ¢; and ¢, are in the same connected component then [t; — t3] = 0.
It is disconcerting at this point to realize that the converse is false: in the simple example
shown in Figure 4.4, A* is a cylinder, Z; and Z5 are both trivial and the reader will have
no trouble checking that [t; — 2] = 0 (or in computing height sections). No flip, however,
is possible.

: ; | ;

—~
&
~—
~~
o
~—

Figure 4.5

If we try to follow the proof of Lemma 3.3 in this example, we see what the problem
is. The height sections differ by 4 along the entire central zig-zag (which actually contains
all points of A* not on the boundary). No point is, however, a local minimum or maximum
for any of the two height sections.

Let us consider this counter-example from a slightly different point of view. By a
ladder we mean a sequence of parallel dominoes side by side such that: two neighbouring
dominoes always touch along one edge of the longer side, each domino in the ladder has
two neighbours in it and these two neighbours touch the domino at different squares. In
Figure 4.4 the two tilings consist of two ladders each. The important thing about ladders is
that they are totally immune to flips. So, if ¢; and ¢, are in the same connected component
then [t; —t2] = 0 and t; and t5 have precisely the same ladders. It may surprise the reader
that this rather ad-hoc condition is actually necessary and sufficient.

Theorem 4.1: Two domino tilings t; and t5 are in the same connected component of T
if and only if [t; — t3] = 0 and t; and ty have precisely the same ladders. Furthermore, if
this is the case, the distance between them is given by

At ) = 3 3 16(0) 60

pEA*

in the case where there is no boundary and Z, is trivial, the additive constants in the
height sections are to be chosen so that the right hand side is minimum.

The right hand side of the distance formula makes sense (and is an integer): 6;(p) and
62(p) are in the same fibre of H, 6;(p) — 62(p) is an element of the corresponding fibre of
Z5, whose absolute value is in Z. As with Theorems 3.1 and 3.2, we isolate the inductive
step in a lemma.

Lemma 4.2: Let A* be a quadriculated surface and let t; and ty be two different tilings
of it with [t; — t2] = 0 and such that neither of them has ladders; let 8, and 65 be the
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corresponding height sections. Assume that 6, and 0y coincide on a non-empty set (possibly
the boundary). Then there exists a tiling t3 of the same region, obtained from ty by a flip
and such that the corresponding height section 03 always lies between 6 and 6.

Proof:

As in Lemma 3.3, let B be that part of the domain where |#; — 65| is maximum; by
hypothesis, B is neither empty nor equal to A*. We claim there is a point of B where we
can perform a flip on #; in order to obtain t3: we call such a point (with a certain abuse
of notation) a local minimum of 6;. Again as in Lemma 3.3, therefore, our aim is to prove
the existence of such a local minimum. Suppose by contradiction there is no such point:
we show the existence of a ladder.

Let p and p’ be two neighbouring points in B. We say that, when moving from p to
p', 01 changes as if trying to get further from 6y if |x; — 62(p')| < |01(p') — 62(p")|, where
x1 is the element of the fibre of H over p' which belongs to H, is different from 6, (p') and
satisfies |z1 — 61(p)| < 3. A point p in B is a local minimum of 6, if and only if it has no
neighbour p' in B such that, when moving from p to p’, 6; changes as if trying to get further
from 6. Thus, since B is finite, there exists a cycle pg,p1,...,pN—1,PN = po of points of
B such that, when going from p; to p;4+1, 61 changes as if trying to get further from 6,. Call
such cycles monotonic. We may interpret a cycle as a 1-complex; we call two monotonic
cycles adjacent if their difference is the boundary of a square in A*. Two monotonic cycles
are homotopic if they can be joined by a sequence of adjacent monotonic cycles; thus,
monotonic cycles break into homotopy classes. If a cycle does not reverse orientations,
we can consistently speak of left and right; since an orientation reversing cycle yields an
orientation preserving one by running along it twice we assume from now on, without loss,
that we are dealing with orientation preserving cycles. It makes sense therefore to speak
of left and right of a cycle and, given two adjacent cycles, we can naturally order them by
saying that one is to the left and the other one to the right.

Claim: Inside each homotopy class there are a leftmost and a rightmost monotonic cycles.

Supposing the opposite, it would always be possible to push a cycle to the left (say),
obtaining a closed sequence cg,¢y,...,cp—1,¢cp = ¢ of adjacent monotonic cycles such
that ¢;41 1s to the left of ¢;. The contradiction arises from proving that the existence of
a closed sequence of cycles as above implies that A* is a torus or a Klein bottle and that
the height sections 8; and 6, never coincide. By going to the universal cover and using the
developing map as in [10], each cycle ¢; becomes a periodic line ¢; in Z?, the period being an
orientation preserving isometry of R? preserving Z?2, thus either a translation or a rotation
of period 2 or 4. If the period of ¢y is not a translation, the curve ¢y surrounds a certain
signed area, which decreases in the process of passing from ¢; to ¢;31, contradicting the fact
that the isometric curves ¢y and ¢y enclose equal areas; thus, the period is a translation.
Also, any isometry taking the infinite curve ¢y to ¢y is another translation, since rotations
would move remote points by distances far greater than M; also, the two translations are
linearly independent since passing from ¢; to ¢; 31 moves curves to the left. The cycle ¢
gives rise to a closed curve in A* by connecting neibouring points; similarly, the points
¢i(0) are joined to produce a second closed curve, based on the same point ¢o(0). These
curves can be interpreted as elements of m1(A*,¢o(0)) and the above translations are their
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representations under holonomy. By extending the discrete homotopy of cycles to a map
from the rectangle [0, N] x [0, M] to A* we see that these two elements of 71 (A*,¢o(0))
commute, thus generating a copy of Z? inside 71 (A*, ¢o(0)). The only compact surfaces,
however, for which the fundamental group contains a copy of Z? are a torus or a Klein
bottle, since any other surface is hyperbolic and there is no copy of Z? inside the isometries
of the hyberbolic plane (see [10]). Since this construction is performed in B, B = A* and
the two height sections never meet. The proof of the claim is thus complete.

Consider these two extreme cycles: they behave very similarly to the least area cycle
in the proof of Lemma 3.3. In fact, repeating the same steps, we see that the polygonal line
joining midpoints between consecutive points of the leftmost (resp., rightmost) cycle never
turns left (resp., right). Now, since these two cycles are homotopic these two polygonal
lines turn by the same angle and it follows that neither turns at all: both cycles are zig-zag
lines exactly like boundaries of ladders. Furthermore, to the left of the leftmost cycle or
to the right of the rightmost cycle t; and t3 must each have a ladder since we cannot
have arrived at the boundary. This contradicts the hypothesis and ends the proof of the
Lemma. m

Proof of Theorem 4.1:

All we have to prove is that if [t; — t2] = 0 and ¢; and t; have the same ladders
then ¢, and t5 are in the same component and the distance between them is smaller than
or equal to the expression at the right hand side in the statement of the theorem. Let
therefore t; and ¢, be tilings as above. Start by removing all ladders from A*: we have
to prove that the tilings on each connected component of whatever remains are in the
same connected of T'. It is clear that on each such connected component height bundles
for t; and t; are isomorphic and the height sections coincide on whatever remains of the
old boundary and differ by a constant on boundaries of removed ladders. We claim that
we can never have a connected component of the boundary consisting of the boundary of
a ladder only: indeed, if this happened, the only way to tile the neighbourhood of this
boundary component would be with a new ladder. It follows that 6; and 6, coincide on the
entire boundary of each connected component of whatever remains after removing ladders.
We can therefore assume without loss of generality that ¢; and t; have no ladders.

When A* has boundary, Lemma 4.2 (plus induction) finishes with the proof. If A*
has no boundary, we must consider two cases. If Z; is non-trivial, the two height sections
must coincide at some point by topological reasons: if they did not, their difference would
yield a global choice of generators for Z; (the difference is to be a positive multiple of the
chosen generator) hence a trivialization of Z; (since the fibre is one-dimensional). If Z; is
trivial, add a constant to 63 in order to make the right hand side of the distance formula
minimum: it is clear that now 6; and 65 coincide at some point. u

As in the planar case, we know which flips to perform in order to get closer to a tiling
ty starting from a tiling t;, assuming, of course, [t; — t3] = 0. Start by computing the
(isomorphic) height bundles and the height sections 6; and §; which must coincide on the
boundary. In case there is no boundary and 25 is trivial, adjust the additive constant to
make distance minimum (this may allow for one or two answers). Now flip at any local
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extremum of 6 if that takes the section closer to §;. Again, there is a local characterization
of shortest paths in 7. However, not all paths are homotopic anymore.

Theorem 4.3: If A* has boundary or Z, is non-trivial, all connected components of T
are contractible. If A* is a torus or a Klein bottle and Z5 is trivial, there are two kinds of
connected components of T': some consist of one single isolated point which corresponds
to a tiling constructed entirely from ladders; others are homotopy equivalent to S*.

Proof:

When A* has boundary or Z; is non-trivial, the proof is entirely analogous to the
planar case. From now on, assume the other situation. Notice first that if a tiling contains
a ladder, it must consist of ladders only: only a ladder fits beside a ladder. We now prove
that a tiling with height section 6; which admits no flips must be of this type. Assume first
that A* is a torus, the quotient of R? (quadriculated by Z?) by a 2-dimensional sublattice
L of Z*. Raise the tiling to the universal cover in order to obtain an L-periodic tiling of
the plane. Taking 65 to be 6; + 4, as in Lemma 4.2, there must exist a monotonic cycle ¢
which, raised to the universal cover R?, must connect the origin to some other point of L;
without loss, this point is of the form (z,y) with > y > 0. By the triviality of 23, « and
y must be of the same parity. Raise 6; to a height function 6, in the plane: we can assume
without loss that él(O, 0) = 0. Also, the value of 6, decreases along the lifted monotonic
cycle ¢. The value of él(:ﬂ,y) must be precisely —2x: a smaller value is impossible for
any height function by conditions (a), (b) and (c¢) and a larger value does not allow for a
monotonic decreasing path from the origin to (z,y). If + = y (in which case & > 0) the
monotonic path é must be a zig-zag going from the origin to (z,y) which can not cross
dominoes and must therefore be a side of a ladder. Otherwise, the values of the height
function at 0 and (x,y) are enough to dictate the values on a parallellogram with vertices
at these points. Since, as in the proof of Lemma 4.2, there exist monotonic cycles through
every point, the whole height function is well determined and the tiling must look like a
garden variety brick wall, constructed from ladders going both ways. We take care of the
Klein bottle by going to the orientable double cover, which is a torus.

For the other cases we claim that the universal cover of the corresponding connected
component of T' consists of all height sections without identifying sections which differ by
a constant. It is clear that this is a covering map and what the CW-complex structure for
this space must be. It is enough to prove that this space is connected and contractible since
the quotient group will obviously be Z, or, more precisely, 4Z. Since after identifications
this space is known to be connected, it is enough to prove that we can move by flips from a
section 6y to 61 +4. From the previous paragraph, we can perform some flip on 6, , without
loss an increasing one, to obtain 6;; but now 6 intersects 6; + 4 at the flipped point and
by Lemma 4.2 and Theorem 4.1 we can move 6, to 6; + 4 by flips. The proof that the
space of sections is contractible is similar to what we already saw in the previous cases,
the fact that there are infinitely many cells being no source of trouble: a point contained
in a cell such that its furthest vertex from the base section is at a distance d starts moving
at time 1/2%,
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This argument also shows that the generator of the fundamental group of a connected
component of 7' is the path from 6 to 8 + 4. Actually, such a closed path is a deformation
retract of the connected component, but we give no details. In Figure 4.6 we show the four
steps of such a cycle for the only non-trivial component of T(A*), where A* = R?/(2Z)?
(move from (a) to (b) to (¢) to (d) to (e)). -

0 1 0 0 1 0 0 1 0 4 1 4 4 5 4

1 -2 —1 -1 2 -1 3 2| 3 3\2\‘3\ 3, 2 3

0100100104‘1
(a) (b) (c) (d) (e)

Figure 4.6

Appendix: Homology and cohomology with local coefficients

This Appendix contains a brief review of the main facts about homology and cohomol-
ogy with local coefficients which are necessary or convenient for us. More specifically, we
apply the general constructions to our examples. Readers which know enough about the
subject to compute homology and cohomology in simple examples and who are acquainted
with Poincaré duality in this context are encouraged to skip the Appendix altogether.
There are good expositions of the subject in [11] and [7]; for the more general theory of
sheaves, the reader may consult [8].

We begin with a description of Hi(A, Z;); as in the usual homology, this is obtained
from a chain complex of additive groups Cy — Cy — Cj by taking the quotient Z,/Bj,
where Z; is the kernel of the second boundary map and Bj is the image of the first. Recall
that the fibre of Z; over a square of A* has a positive and a negative generator; thus,
the fibre of Z; over vertices of A also has a positive and a negative generator. Thus, the
generators of the fibre of Z; over an edge of A are positive on one of extrema and negative
on the other. Over a square of A, the generators are alternatedly positive and negative
over the four vertices. The additive groups C; are generated by (formal) products of an
oriented i-cell in A by a generator of the fibre over it. Thus, generators of Cy are vertices
with an orientation, i.e., a sign, as in Figure A.1(a). Similarly, generators of C; and C; are
indicated in Figures A.1(b) and (¢); the second equality in (b) is a notational convenience.
The action of the boundary maps Ci;y1 — C; over generators is indicated in Figures A.1(d)
and (e); notice that the composition of both is zero.

We provide a similar description of the relative cohomology group H'(A*,0A*; Z5).
Again, our first task is to construct C?, C', C° and the coboundary maps. The fibre
of Z5 over a square of A* is isomorphic to Z. An orientation for the square and a sign
(which again alternates between neighbouring squares) determine a generator of the fibre:
changing one of these ingredients alters the generator. Thus, the additive group C? is
generated by the map taking a given oriented square of A* to the generator of Z; over
this same square corresponding to the orientation of the square and the plus sign: we
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Figure A.1

denote such generators as in Figure A.2(a). Generators of C'' are maps taking a given
non-boundary oriented edge of A* to the generator of Z; defined as follows: choose any
of the two adjacent squares to the edge, orient it so that the induced orientation on the
boundary equals the original orientation of the edge, and take the generator of Z; over
it corresponding to its orientation and the plus sign. It is easy to check that this map
does not depend on the choice of the adjacent square; we denote the generators of C'! as
in Figure A.2(b). Generators of C° are maps taking an interior vertex of A* to one of
the generators of the fibre of Z; over it; the choice of the generator is indicated by an
orientation and signs for the neighbouring squares as in Figure A.2(c). Coboundary maps
over generators are indicated in Figures A.2(d) and (e). In order to obtain the cohomology
group H'(A*; Z;), drop the restrictions that edges or vertices must be interior.

(d)
Figure A.2

We recall the basic facts concerning Poincaré duality. Ordinary Poincaré duality ([4])
works by identifying Cy(M) for a given triangulation with C"~*(M) for the dual triangu-
lation, where M is an n-dimensional oriented closed manifold (the orientation is used in the
identification procedure). This identification commutes (up to signs) with boundary and
coboundary operations and thus induces, by taking quotients, the identifications between
Hy(M) and H" *(M). In Lefschetz duality ([4]), we work with oriented n-manifolds
with boundary and identify Cy(M) with C¥(M,0M) again by looking at dual triangu-
lations. More generally, we can consider local coefficients Z and, still for an oriented
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manifold with boundary, essentially the same construction yields an identification between
Cr(M; Z) and C"~*(M,0M; Z). One way to get rid of the orientability hypothesis is to
let the cohomology coefficients take care of the problem ([8]): if Zy is the Z-bundle over
M with generators corresponding to (local) orientations, the appropriate generalization of
Poincaré’s construction provides the identification

Cr(M; 2) = C"F(M,0M; Z @ Z).
By taking quotients, we obtain the duality we need:

Hy(M;Z2) = H" ¥(M,0M; Z ® Z,). (%)

Going back to our context, it is easy to see that Z; = Z; ® Zy, where Z; is constructed
as above. The identification

Hi(A;Z,)= H'(A*,0A*; Z,)

is a special case of (*). Notice, however, that our descriptions of the chain and cochain
complexes yield an explicit construction of this bijection: just match corresponding letters
in Figures A.1 and A.2.

We compute the homology groups which appear in Figure 4.2. Whenever the coeffi-
cient bundle is trivial, we are dealing with the usual homology group with coefficients in
Z ([11]), and this takes care of (b) and (c¢). Otherwise, by invariance of homology under
deformation retracts, we are reduced to computing H;(S'; Z), where Z is the non-trivial
Z-bundle over S!. Consider the very simple CW-decomposition of the circle with a single
edge having both extrema attached to the same 0-cell. The groups Cy and C; are both
cyclic and the boundary map takes a generator of Cy to twice a generator of Csy; thus,
Hi(S'; Z) = 0, as claimed, and Hy(S'; Z) = Z/(2). In the comments concerning Figure
4.4, we state that H'(A*; Z5) = Z/(2), where A* is a Mobius band and 25 is non-trivial:
again, by invariance under deformation retracts, it suffices to compute H'(S'; Z) with Z
as above. The groups C° and C'! are both cyclic and C? is trivial; the coboundary takes a
generator of C° to twice a generator of C'!, so that H'(S'; Z) = Z/(2) and H°(S'; Z) = 0.

5. Final remarks
A. Calisson tilings

A calisson i1s the union of two equilateral triangles with a common side. Calisson
tilings of simply connected regions in the plane admit height functions ([9]) with a strong
visual interpretation: by looking at a calisson tiling, you can see it as a figure of a pile of
(3-dimensional) cubes, the calissons being their faces ([2]). In close analogy with what we
did in this paper, we can define height sections for calisson tilings of other regions. In this
context, we perform a flip by lifting three calissons forming a hexagon and placing them
back in the only possible different configuration. Clearly, two tilings are adjacent by a flip
if their height sections differ at a single point. Under the pile-of-cubes interpretation, a
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flip corresponds to adding or removing a cube. Thus, for simply connected regions, the
space of tilings is connected and the distance between two tilings is given by the number of
non-common cubes. Height sections might be useful for a more careful study of the space
of calisson tilings of more complicated regions.

B. The adjacency matrix of A

The adjacency matrix of A is of the form

0 M
Mt 0 )’

provided white vertices are listed before black vertices. The sign of det M is not natural:
it depends on the order in which the vertices are listed. Tilings of A* correspond to
monomials in the expansion of the determinant of M. Indeed, such a monomial (up to
sign) corresponds to a set of 1’s in M with exactly one element in each row or column:
each 1 gives rise to an edge of A and it is clear that the associated set is a covering
by edges. Tilings are thus naturally divided into two classes according to the sign of
the corresponding monomial and we shall say that two tilings have the same or opposite
parities if the corresponding monomials have the same or opposite signs (there is, however,
no natural definition of an ‘even’ and an ‘odd’ tiling). It is easy to see that adjacent tilings
always have opposite parities.

Figure 5.1

The absolute value of the determinant of M is the difference between the number of
tilings of each parity: in [3], it is shown that, when A* is a simply connected surface, this
difference is 0 or 1. On the other hand, if A is not simply connected, this difference can
have any value (see [3] or consider instead a 4 x (2n — 1) rectangle with n — 1 vertical
isolated dominoes removed from its interior). Since A being simply connected implies the
connectivity of T(A), it might be thought that the correct generalization to non-simply
connected regions would be that, on each connected component of T'(A), this difference still
is 0 or 1. In the examples shown in Figure 5.1, however, there are always three connected
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components with differences of 1, —2 and 1 (in the natural order). Indeed, in both cases
it is easy to see that det(M) = 0 by considering the element of the kernel indicated in
the Figure; the fact that there are three connected components follows from Theorem 1.1,
by merely constructing tilings with different flows, and it is just as easy to see that two
of these components have a single element each, always with the same parity: our claim
follows.

C. Higher dimensions

The obvious generalization of Theorem 1.1 to higher dimensions is false even if A* is
a topological closed ball contained in Z" (although the definition of [t; — t3] still works,
and properties (a), (b), (¢) and (d) as above still hold). In dimension 3, let

A ={(0,0,0),(0,0,1),(0,0,2),(0,1,0),(0,1,1),(0,1,2),(1,0,1),(1,0,2),(1,1,0),(1,1,1)}.

The tiling
([0,1],1,0),([0,1],0,2),(1,]0,1],1),(0,0,]0,1]),(0,1,[1,2])

has no adjacent tilings (since there is no square to flip) but is not the only one: consider
(0,[0,1],0),(0,[0,1],1),(0,[0,1],2),(1,0,[1,2]),(1,1,[0,1]).

As another example, now in dimension 4, let A = {0,1}* be the cube of side 2. The tiling

again has no neighbours but is not the only one. By the way, we know of no satisfactory
extension of the idea of height sections to higher dimensions: the definition of (t) as a
(n —1)-cocycle still works but, even if this is exact, its integral is not close to being unique.
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