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Abstract

A smooth curve γ : [0, 1] → S2 is locally convex if its geodesic curvature
is positive at every point. J. A. Little showed that the space of all locally
positive curves γ with γ(0) = γ(1) = e1 and γ′(0) = γ′(1) = e2 has three
connected components L−1,c, L+1, L−1,n. The space L−1,c is known to be
contractible but the topology of the other two connected components is
not well understood. We prove that all connected components of LI are
simply connected, that H2(L+1; Z) = Z

2 and H2(L−1,n; Z) = Z.

1 Introduction

A curve γ : [0, 1] → S2 is called locally convex if its geodesic curvature is
always positive, or, equivalently, if det(γ(t), γ′(t), γ′′(t)) > 0 for all t. Let LI be
the space of all locally convex curves γ with γ(0) = γ(1) = e1 and γ′(0) = γ′(1) =
e2. J. A. Little [2] showed that LI has three connected components L−1,c, L+1,
L−1,n: we call these the Little spaces. Figure 1 shows examples of curves in L−1,c,
L+1 and L−1,n, respectively. The space L−1,c is known to be contractible ([7])
but the topology of the other two connected components is not well understood.
In this series of papers we present new results concerning the homotopy and
cohomology of the Little spaces. A more ambitious aim would be to determine
the homotopy type of these spaces (which we hope to accomplish in [3]).

Let II be the space of immersed curves γ : [0, 1] → S2, γ(0) = γ(1) = e1,
γ′(0) = γ′(1) = e2. For each γ ∈ II , consider its Frenet frame Fγ : [0, 1] → SO(3)
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Figure 1: Curves in L−1,c, L+1 and L−1,n.

and its lift F̃γ : [0, 1] → S
3. The value of F̃γ(1) defines the two connected

components of II : γ ∈ I+1 if and only if F̃γ(1) = 1. It is well know that
each space I±1 is homotopically equivalent to ΩS3. In particular each I±1 is
connected, simply connected and there is an element x ∈ H2(I±1; Z) such that
each H2k(I±1; Z) = Z is generated by xk. Let L+1 = I+1 ∩ LI , L−1 = L−1,c ⊔
L−1,n = I−1 ∩ LI . In the first paper ([4]) we saw that the inclusions L±1 ⊂
I±1 are homotopically surjective but not homotopy equivalences. Indeed, we
constructed elements f2k ∈ H2k(L(−1)(k+1) ; Z) and maps g2k : S2k → L(−1)(k+1)

with f2k(g2k) = 1, g2k homotopic to a constant in I(−1)(k+1) and f2k not in (the

image of) H2k(I(−1)(k+1) ; Z). In other words, there we give lower estimates for the

groups H2k(L±1; Z) and π2k(L±1). In the present paper we give upper estimates
which imply the following theorem.

Theorem 1 The connected components of LI are simply connected. Further-
more, H2(L−1,n; Z) is generated by x and H2(L+1; Z) is generated by x and f2.
Also, π2(L−1,n) = Z and π2(L+1) = Z2 is generated by g2 and g̃2.

Notice that Lper, the set of all 1-periodic locally convex curves γ̃ : R → S2

is homeomorphic to SO(3) × LI : define Ψ : Lper → SO(3) × LI by Ψ(γ̃) =
(Fγ̃(0), (Fγ̃(0))−1γ̃|[0,1]). We usually prefer to work in LI but sometimes move to
Lper.

In Section 2 we review some known results. Section 3 contains an algebraic
description of the all-important construction ∆♯; pulling one loop around is a
special case of ∆♯. Section 4 discusses the uses and limitations of ∆♯ to prove that
a map f : K → LI is homotopic to ν2∗f (which essentially reduces the problem to
the well-understood scenario of immersions). In Section 5 the discussion becomes
more geometric and less algebraic as we discuss loops and the set T0 ⊂ L+1 of
stars: roughly, once T0 is removed, L+1 r T0 rather resembles I+1. Section 6
polishes a few nasty configurations so that we can complete the proof of our
main results in Section 7. Section 8 is a very short conclusion.

The author would like to thank Dan Burghelea and Boris Shapiro for helpful
conversations. The author acknowledges the hospitality of The Mathematics
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Department of The Ohio State University during the winter quarters of 2004 and
2009 and the support of CNPq, Capes and Faperj (Brazil).

2 Previous results

One of the fundamental constructions in Little’s argument is that if the curve
γ ∈ LI has a loop, we can add a pair of loops as in Figure 2: in (a), the loop
moves one full turn along a geodesic and in (b) the large loops are shrunk (we
will discuss (c) later).

(a) (b) (c)
γ γ♯

t0t0t0t0 t1t1t1t1

Figure 2: How to go from γ to γ♯

Let C0 be the circle with diameter e1e3, parametrized by ν1 ∈ LI ,

ν1(t) =

(

1 + cos(2πt)

2
,

√
2

2
sin(2πt),

1 − cos(2πt)

2

)

.

For positive n, let νn(t) = ν1(nt) so that ν1 ∈ L−1,c and, for n > 1, νn ∈ L(−1)n .

For γ1 ∈ Iσ1 , γ2 ∈ Iσ2 , σi ∈ {+1,−1}, let γ1 ∗ γ2 ∈ Iσ1σ2 be defined by

(γ1 ∗ γ2)(t) =

{

γ1(2t), 0 ≤ t ≤ 1/2,

γ2(2t− 1), 1/2 ≤ t ≤ 1.

Notice that if γ1, γ2 ∈ LI then γ1 ∗ γ2 ∈ LI . For f : K → II , let νn ∗ f : K → II

be defined by (νn ∗ f)(p) = νn ∗ (f(p)). Intuitively, νn ∗ f is obtained from f
by adding n loops to f(p) at the point f(p)(0). We may want to spread out n
loops along the curve: for γ ∈ Iσ and for large n, define (Fn(γ))(t) = Fγ(t)νn(t).
For small n, the above function from [0, 1] to S

2 may not be an immersion. For
sufficiently large n, however, Fn(γ) ∈ L(−1)nσ.

By the above construction, it is clear that given γ ∈ L+1 ⊔ L−1,n there exist
Ha, Hb : [0, 1] → L±1, Ha(0) = Hb(0) = γ, Ha(1) = ν2 ∗ γ, Hb(1) = F2n(γ). The
construction is not uniform, however: is depends on the choice of the loop. In
other words, given a compact set K and a map f : K → L+1⊔L−1,n, the existence
of H : [0, 1]×K → L+1 ⊔L−1,n, H(0, ·) = f , H(1, ·) = ν2 ∗ f or H(1, ·) = F2n ◦ f
is not clear at this point. Indeed, the existence (or not) of such a homotopy is the
crucial point in this paper. The following proposition helps clarify the situation.
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Proposition 2.1 ([4]) Let K be a compact set and let f : K → LI ⊂ II a
continuous function.

(a) For sufficiently large n, the functions ν2 ∗ f and F2n ◦ f are homotopic in LI .

(b) If f = ν1 ∗ f̃ (for some f̃) then f is homotopic to ν2 ∗ f .

(c) The function f is homotopic to a constant in II if and only if ν2 ∗ f is
homotopic to a constant in LI .

(d) There exists a map g2 : S2 → L+1 such that ν2∗g2 is homotopic to a constant
in L+1 but g2 is not.

3 Bruhat cells and the set W
Given a locally convex curve γ : [0, 1] → S2 and a 3 × 3 matrix A with positive
determinant, the curve γA : [0, 1] → S2,

γA(t) =
Aγ(t)

|Aγ(t)|
is also locally convex. Furthermore, FγA(t) = AFγ(t)U for U ∈ U+, where U+ is
the group of upper triangular 3 × 3 matrices with positive off-diagonal entries.

Let U1 ⊂ U+ be the group of upper triangular matrices with unit diagonal.
Recall that SO(3) is divided in Bruhat cells by the following equivalence relation:
Q1 and Q2 are equivalent if and only if there exist U1 ∈ U1 and U2 ∈ U+

with Q1 = U1Q2U2. The group Weyl group D3 ⊂ SO(3) of signed permutation
matrices with positive determinant has one element per cell. The four open cells
J1,J2,J3,J4 have respective representatives

J1 =





0 0 −1
0 1 0
1 0 0



 , J2 =





0 0 1
0 −1 0
1 0 0



 ,

J3 =





0 0 1
0 1 0
−1 0 0



 , J4 =





0 0 −1
0 −1 0
−1 0 0



 .

Further recall ([6], [7], [5]) that given Q ∈ SO(3) there exists a convex curve
γ : [0, 1] with Fγ(0) = I and Fγ(1) = Q if and only if Q belongs to J2 or to one
of the 5 lower dimensional cells in its boundary corresponding to the following
matrices:




1 0 0
0 1 0
0 0 1



 ,





0 1 0
−1 0 0
0 0 1



 ,





1 0 0
0 0 1
0 −1 0



 ,





0 0 1
−1 0 0
0 −1 0



 ,





0 1 0
0 0 1
1 0 0



 .
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As a consequence, given Q ∈ SO(3), there exists γ ∈ L−1,c with Fγ(1/2) = Q
if and only if Q ∈ J2. Similarly, Q−1

0 Q1 ∈ J4 if and only if there exists a
convex curve γ : [0, 1] → S

2 with γ(0) = γ(1) = Q0e1, γ
′(0) = γ′(1) = −Q0e2,

γ(1/2) = Q1e1, γ
′(1/2) = −Q1e2.

Let W ⊂ LI×S1×S1 be the set of triples (γ, t0, t1) such that (Fγ(t0))
−1Fγ(t1) ∈

J4. Define U1 : W → U1 and U2 : W → U+ so that (Fγ(t0))
−1Fγ(t1) = U1J4U2.

Alternatively, (γ, t0, t1) ∈ W if and only if there exists a convex curve α : S1 → S2,
α(0) = γ(t0), α

′(0) = −γ′(t0), α(1) = γ(t1), α
′(1) = −γ′(t1). Notice that W is

an open subset of LI ×S1 ×S1; (γ, t0, t1) ∈ W implies t0 6= t1 and (γ, t1, t0) ∈ W.

We now define the function ∆♯ : [0,+∞)×W → LI , one of our main technical
tools throughout the paper.

Definition 3.1 Let (γ, t0, t1) ∈ W and t• ∈ S1 with t• < t0 < t1 < t• + 1. Take
ǫ♯ > 0, ǫ♯ < (1/20) min(t0 − t•, t1 − t0, t• + 1− t1). Let Q0 = Fγ(t0), Q1 = Fγ(t1),

U1 = U1(γ, t0, t1), U2 = U2(γ, t0, t1) so that Q−1
0 Q1 = U1J4U2. Let α = γU−1

1 Q−1
0 ,

i.e.,

α(t) =
U−1

1 Q−1
0 γ(t)

|U−1
1 Q−1

0 γ(t)| ;

α is locally convex with Fα(t0) = I, Fα(t1) = J4. For s ∈ [0,+∞), let Ts =
min(s, 2); define an increasing piecewise linear homeomorphisms ha,s : [0, Tsǫ

♯] →
[0, s] whose graph is a polygonal line with vertices (0, 0), (ǫ♯, 1) (if s ≥ 1) and
(Tsǫ

♯, s). Similarly, let the graph of hb,s : [t0 + ǫ♯Ts, t1 − ǫ♯Ts] → [t0, t1] have
vertices (t0 + Tsǫ

♯, t0), (t0 + 4ǫ♯, t0 + 4ǫ♯) (t1 − 4ǫ♯, t1 − 4ǫ♯) and (t1 − Tsǫ
♯, t1).

Define αs : [t0, t1] → S2 by

αs(t) =











ν1 (ha,s(t− t0)) , t0 ≤ t ≤ t0 + Tsǫ
♯,

Fν1(s)α (hb,s(t)) , t0 + Tsǫ
♯ ≤ t ≤ t1 − Tsǫ

♯,

J4ν1 (−ha,s(t1 − t)) , t1 − Tsǫ
♯ ≤ t ≤ t1.

Finally,

Q∆♯(s, γ, t0, t1) =

{

γ(t), t• ≤ t ≤ t0 or t1 ≤ t ≤ t•,

(αs)
Q0U1(t), t0 ≤ t ≤ t1,

where Q ∈ SO(3) is uniquely chosen so that F∆♯(s,γ,t0,t1)(0) = I.

A few remarks are in order. The curve αs is obtained from α by attaching
an arc of circle of angle 2πs to either end, rotating the curve to keep the same
endpoints and reparametrizing. Similarly, ∆♯(s, γ, t0, t1) is obtained from γ by
inserting an arc of 2πs at positions t0 and t1; if s is not an integer, the portion
of γ between t0 and t1 will be “rotated”. Up to minor deformations, the path
∆♯(s, γ, t0, t1), s ∈ [0, 1], from γ to γ♯

t0,t1 = ∆♯(1, γ, t0, t1) is exemplified in Figure
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2 (in a situation where 0 < t0 < t1 < 1). The loop between t0 and t1 is pushed
along a geodesic all the way, until it comes back (a). The two long chunks of
curve (in the figure, very nearly geodesics) are then shrunk (b) and rounded (c)
so that we obtain γ♯

t0,t1 . Notice that the portion of γ outside the interval [t0, t1]
is unaltered throughout the process.

Strictly speaking, the definition of ∆♯ depends on the choice of ǫ♯: the only
difference, however, when you change ǫ♯ is that functions get reparametrized.
Similarly, we ask that U1 ∈ U1 so that U1 and U2 become uniquely determined.
The function hs in Definition 3.1 is chosen so that the following technical result
holds.

Lemma 3.2 Let K be a compact set and (f, t0, t1) : K → W a continuous map;
there exists ǫ♯ > 0 which suits the definition of ∆♯(s, f(p), t0(p), t1(p)) for all s.

Let K ⊂ LI be the compact set of all curves of the form ∆♯(s, f(p), t0(p), t1(p)),
p ∈ K, s ∈ [0, 3]. For s > 0, let n = ⌊s − 3⌋, s̃ = s − n. For p ∈ K, let
γ = ∆♯(s, f(p), t0(p), t1(p)), γ̃ = ∆♯(s̃, f(p), t0(p), t1(p)). Let

h(t) =































0, t• ≤ t ≤ t0,

n(t− t0)/ǫ
♯, t0 ≤ t ≤ t0 + ǫ♯,

n, t0 + ǫ♯ ≤ t ≤ t1 − ǫ♯,

2n− n(t1 − t)/ǫ♯, t1 − ǫ♯ ≤ t ≤ t1,

2n, t1 ≤ t ≤ t•.

Then γ̃ ∈ K and

γ(t) = QFγ̃(t)ν
U1(p)
1 (h(t)), Q ∈ SO(3),

where U1(p) = U1(f(p), t0(p), t1(p)).

Proof: This is a straightforward computation. �

The functions ∆♯(s̃, (∆♯(s, γ, t0, t1), t0, t1)) and ∆♯(s + s̃, γ, t0, t1) differ by
reparametrization only. Under suitable hypothesis, a related identity holds for
distinct points (γ, t0, t1), (γ, t2, t3). Two points (γ, t0, t1), (γ, t2, t3) ∈ W are dis-
joint if the intervals [t0, t1], [t2, t3] ⊂ S1 are disjoint, or, equivalently, if t0 < t1 <
t2 < t3 < t0 + 1 or t2 < t3 < t0 < t1 < t2 + 1.

Lemma 3.3 If (γ, t0, t1), (γ, t2, t3) ∈ W are disjoint then, for any s, s̃ ∈ [0, 1],

(∆♯(s, γ, t0, t1), t2, t3), (∆
♯(s̃, γ, t2, t3), t0, t1) ∈ W.

Furthermore,

∆♯(s̃, (∆♯(s, γ, t0, t1), t2, t3)) = ∆♯(s, (∆♯(s̃, γ, t2, t3), t0, t1)).

Proof: This follows directly from the construction of ∆♯ and of the function
γ∗s in the definition. Indeed, γ∗s for (t0, t1) coincides with γ in an open interval
containing (t2, t3) (and vice versa). �
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4 Disjoint covers

Recall that one of our aims is to decide whether a continuous map f : K → LI

is homotopic to ν2 ∗ f . In this section, we present several situations where this
is the case and one example where this is not the case. We start with a simple
example.

Lemma 4.1 Let K be a compact set and f : K → LI a continuous map. If
there is a continuous function t1 : K → S

1 such that for all p ∈ K we have
(f(p), 0, t1(p)) ∈ W then f is homotopic to ν2 ∗ f .

Proof: Let H : [0, 1] ×K → LI be defined by H(s, p) = ∆♯(2s, f(p), 0, t1(p)).
Up to reparametrization, H(1, p) = ν2∗ f̃(p), where f̃(p) is obtained from f(p) by
inserting two turns at t1(p). Since ν2 and ν4 are in the same connected component,
ν2 ∗ f̃ is homotopic to ν2 ∗ (ν2 ∗ f̃) and therefore to ν2 ∗ f . �

Given this result, some questions are natural:

• If there exist continuous functions t0, t1 : K → S1 with (f(p), t0(p), t1(p)) ∈
W, does it follow that f is homotopic to ν2 ∗ f?

• If for every p there exist t0, t1 ∈ S1 such that (f(p), t0, t1) ∈ W, does it
follow that f is homotopic to ν2 ∗ f?

As we shall see, the answers are yes and no, respectively. Before we attack these
problems, however, we introduce a few concepts.

Define
O = {γ ∈ LI | ∀t0, t1 ∈ S

1, (γ, t0, t1) /∈ W} :

the set O is clearly a closed subset of LI . A double point of a curve γ ∈ LI is a
pair (t0, t1) ∈ (S1)2, t0 6= t1, with γ(t0) = γ(t1). Similarly, an n-tuple point is an
n-tuple (t0, t1, . . . , tn−1), 0 ≤ t0 < t1 < · · · < tn−1 < 1, such that γ(t0) = γ(t1) =
· · · = γ(tn−1). We identify the double point (t1, t0) with (t0, t1). A double point
(t0, t1) is a self-tangency if γ′(t0) and γ′(t1) are parallel and transversal otherwise.
A self-tangency (t0, t1) is positive if γ′(t1) is a positive multiple of γ′(t0) (and
negative otherwise).

If (t0, t1) is a positive self-tangency, the normal vector nγ(t) = Fγ(t)e3 satisfies
nγ(t0) = nγ(t1). Define h1(t) = 〈γ(t),Fγ(t)e2〉, h2(t) = 〈γ(t),nγ(t0)〉: notice
that h1(t0) = h1(t1) = h2(t0) = h2(t1) = 0, h′2(t0) = h′2(t1) = 0, h′1(t0) > 0
and h′1(t1) > 0. There exists ǫ > 0 such that h1|(t0−ǫ,t0+ǫ) and h1|(t1−ǫ,t1+ǫ) are
invertible. Let g0 = h2 ◦ (h1|(t0−ǫ,t0+ǫ))

−1 and g1 = h2 ◦ (h1|(t1−ǫ,t1+ǫ))
−1: near

the origin, the graph of gi is the orthogonal projection of the image of the curve
γ near γ(ti) to the tangent plane, using γ′(ti)/|γ′(ti)| and nγ(ti) as basis. By
construction, g0(0) = g1(0) = 0 and g′0(0) = g′1(0) = 0. By convexity, g′′0(0) > 0,
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g′′1(0) > 0. The self-tangency (t0, t1) has order n if g
(n)
0 (0) 6= g

(n)
1 (0) but g

(j)
0 (0) =

g
(j)
1 (0) for any j < n and order +∞ if g

(j)
0 (0) = g

(j)
1 (0) for any j. A self-osculating

point is a positive self-tangency of order 3 or more.

Lemma 4.2 Let (t0, t1) be a double point of γ ∈ LI . If (t0, t1) is either transver-
sal or a negative self-tangency then for any ǫ > 0 there exist t̃0, t̃1, |t̃0− t0|+ |t̃1−
t1| < ǫ, (γ, t0, t1) ∈ W.

Proof: First consider transversal double points. Assume without loss of gen-
erality that det(γ(t0), γ

′(t0), γ
′(t1)) > 0. For small ǫ we may take t̃0 = t0 + ǫ/4,

t̃1 = t1 − ǫ/4: this is a straightforward computation but is probably best verified
geometrically in Figure 3: the dashed convex curves tangent to γ validate the
geometric characterization of W.

t0 − ǫ/4

t0 + ǫ/4
t0 + ǫ/4

t1 − ǫ/4

t1 − ǫ/4

t1 + ǫ/4

Figure 3: Obtaining (t̃0, t̃1) such that (γ, t̃0, t̃1) ∈ W.

For a negative self-tangency and small ǫ we may take either t̃0 = t0 + ǫ/4,
t̃1 = t1−ǫ/4 or t̃0 = t0−ǫ/4, t̃1 = t1 +ǫ/4: this is again verified in Figure 3. �

It follows directly from this result that if γ ∈ O then all double points of γ
are positive self-tangencies.

t0

Figure 4: A curve in O2.

The following proposition settles the second question raised at the beginning
of this section. Recall ([4]) that g+,2 : S2 → L+1 is an explicit function such that
g+,2 and ν2 ∗ g+,2 are not homotopic in L+1 (even though they are homotopic in
I+1).
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Proposition 4.3 There is a map f : S2 → L+1 rO which is homotopic (in L+1)
to g2. In particular, f and ν2 ∗ f are not homotopic.

Proof: Let S
1 be the unit circle in the complex plane and let D ⊂ C be the

closed disk of radius 1/4. For s ∈ D, let gs : S1 → R2 be defined by

gs(z) = −iz2 − i

10
z−3 + sz−1;

some such curves are drawn in Figure 5 (the curve corresponding to s = 0 is in
position (6, 5), i.e., sixth row, fifth column).

Figure 5: A family of convex curves.

A straightforward computation verifies that these curves are locally convex in
the plane: central projection obtains a similar family of locally convex curves in
the sphere. Notice that there are 5 curves with self-osculating points (approxi-
mately in positions (3, 5), (5, 2), (5, 8), (9, 3) and (9, 7)) but none of them lie in
O since they all have transversal double points.



10 The homotopy and cohomology of L±1 March 15, 2012

Remove a small disk near ν2 in the function g+,2 corresponding to the region
below the bottom row in Figure 9 of [4]; the above family can be used to plug
the hole. The resulting function if homotopic to g+,2 and its image is contained
in L+1 r O. �

Before we answer the first question, we present another situation where f is
guaranteed to be homotopic to ν2 ∗ f .

Lemma 4.4 Let K be a compact manifold and f : K → LI be a continuous map.
Assume there exist functions t0, t1 : K → (0, 1) such that, for all p ∈ K:

(a) 0 < t0(p) < t1(p) < 1;

(b) f(p)|[0,t0(p)] and f(p)|[t0(p),t1(p)] are convex;

(c) there exists a convex curve α(p) : [0, 1] → S2 with Fα(p)(0) = Ff(p)(t0(p)),
Fα(p)(1/2) = Ff(p)(0), Fα(p)(1) = Ff(p)(t1(p)).

Then f is homotopic to ν2 ∗ f .

Proof: Define H : [0, 1] → LI for s ∈ [0, 1/2] with H(0, p) = f(p) and

H(1/2, p)(t) =

{

f(p)(t), t ∈ [0, t0(p)] ∪ [t1(p), 1],

α(p)
(

t−t0(p)
t1(p)−t0(p)

)

, t ∈ [t0(p), t1(p)].

Contractibility of the space of convex curves with prescribed initial and final value
and direction guarantees that this can be done. Let t1/2(0) = (t0(p) + t1(p))/2:
notice that H(1/2, p)|[0,t1/2(p)] is a closed convex curve. Set

H(1, p)(t) =

{

ν1(2t), t ∈ [0, 1/2],

H(1/2, p)
(

t−t1/2(p)

1−t1/2(p)

)

, t ∈ [1/2, 1];

contractibility of L−1,c guarantees that this can be done. Now f̃ : K → LI ,
f̃(p) = H(1, p), is of the form f̃ = ν1 ∗ (something). The result now follows from
Proposition 2.1, item (b). �

For a function f : K → LI , a finite open cover K =
⋃

i=1,...,N Vi together with

functions t0,i, t1,i : Vi → S1 is a disjoint cover of f if:

(a) if p ∈ Vi then (f(p), t0,i(p), t1,i(p)) ∈ W;

(b) if p ∈ Vi ∩ Vj then the points (f(p), t0,i(p), t1,i(p)), (f(p), t0,j(p), t1,j(p)) ∈ W
are either equal or disjoint.

The following lemma settles the fist question; it is actually much stronger.
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Lemma 4.5 Let K be a compact manifold and f : K → LI be a continuous map.
If the function f admits a disjoint cover then f is homotopic to ν2 ∗ f .

It is instructive to verify directly that the function f constructed in Proposi-
tion 4.3 does not admit a disjoint cover.

Proof: Consider a function f and a cover by disjoint loops with the notation
above. Recall that the support supp(φ) of φ : K → [0, 1] is the closure of
φ−1((0, 1]). Let φi : K → [0, 1] be a partition of unit: supp(φi) ⊂ Vi and
∑

i φi(p) = 1.

Intuitively, our first step is to apply ∆♯(σ, · · · ) to the points given by the
cover; σ is a function which goes to zero together with φi. More precisely, select
ǫ♯ > 0 such that if φi1(p), φi2(p) > 0 and t0,i1(p) < t1,i1(p) < t0,i2(p) < t1,i2(p) <
1 + t0,i1(p) then

20ǫ♯ < min(t1,i1(p)−t0,i1(p), t0,i2(p)−t1,i1(p), t1,i2(p)−t0,i2(p), 1+t0,i1(p)−t1,i2(p)).

For p ∈ K, let (t0,j,p, t1,j,p), j = 1, . . . , Np, 1 ≤ Np ≤ N , be the distinct pairs for
which there exists i ∈ {1, . . . , N}, p ∈ Vi, t0,j,p = t̃0,i(p), t1,j,p = t̃1,i(p). For each
j, let Ij ⊂ {1, . . . , N} be the set of indices i for which the above conditions hold.
Define

ψj(p) =
∑

i∈Ij

φi(p).

For s ∈ [0, 1/2], let σj(s, p) = min(2M, 12MNsψj(p)) where M > 0 is a large
integer to be specified later. Let H0(s, p) = f(p) and define recursively

Hj(s, p) = ∆♯(σj(s, p), Hj−1(s, p), t0,j,p, t1,j,p)

and H(s, p) = HNp(s, p). By Lemma 3.3 the order of the indices does not matter.

Intuitively, we added many turns to each curve and must now spread them.
Define U1 : K × S1 → U1 so that if p ∈ Vi, t ∈ [t0,i(p), t0,i(p) + 4ǫ♯] ∪ [t1,i(p) −
4ǫ♯, t1,i(p)] then U1(p, t) = U1(f(p), t0,i(p), t1,i(p)). Write

R(p, t, x) = U1(p, t)Fν1(x)(U1(p, t))
−1;

notice that R(p, t, x1)R(p, t, x2) = R(p, t, x1 +x2). For any p ∈ K there is at least
one index j such that ψj(p) ≥ 1/(3N) and therefore σi(1/2, p) = 2M : assume
without loss of generality that these indices are j = 1, . . . , Ñp, 1 ≤ Ñp ≤ Np. We
define an auxiliary curve η(p) ∈ LI by η0 = f(p), ηj = ∆♯(M, ηj−1, t0,j,p, t1,j,p) for
j = 1, . . . , Ñp and ηj = ∆♯(σj(1/2, p), ηj−1, t0,j,p, t1,j,p) for j = Ñp + 1, . . . , Np and
η(p) = ηNp so that, by Lemma 3.2,

H(1/2, p)(t) = r(p, t)Fη(p)(t)R



p, t,M
∑

j=1,...,Ñp

(β0,j(t) + β1,j(t))



 e1,
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where r(p, t) ∈ (0,+∞) and

β0,j = β[t0,j,p,t0,j,p+ǫ♯], β1,j = β[t1,j,p−ǫ♯,t1,j,p], β[t−,t+](t) =











0, t ≤ t−,
t−t−

t+−t−
, t− ≤ t ≤ t+,

1, t ≥ t+.

Given an interval [t−, t+] ⊂ S1 define t• = (t+ + t− − 1)/2 so that t• < t− < t+ <
t• + 1. Given θ ∈ [0, 1], let

[t−, t+]θ = [θt• + (1 − θ)t−, θ(t• + 1) + (1 − θ)t+]

so that if θ = 1 the interval degenerates to the whole circle. Let θj : [1/2, 1]×K →
[0, 1] be

θj(s, p) =











0, ψj(p) ≤ 1
3N
,

(2s− 1)(3Nψj(p) − 1), 1
3N

≤ ψj(p) ≤ 2
3N
,

2s− 1, ψj(p) ≥ 2
3N
.

Define
β0,j,s = β

[t0,j,p,t0,j,p+ǫ♯]θj (s,p), β1,j,s = β
[t1,j,p−ǫ♯,t1,j,p]θj (s,p),

H(s, p)(t) = r(p, s, t)Fη(p)(t)R



p, t,M
∑

j=1,...,Ñp

(β0,j,s(t) + β1,j,s(t))



 e1

= r(p, s, t)Fη(p)(t)U1(p, t)ν1



M
∑

j=1,...,Ñp

(β0,j,s(t) + β1,j,s(t))





where r(p, s, t) is a positive number chosen so that the expression has absolute
value 1. For sufficiently largeM , all the functions constructed above will belong to
LI , as required. Indeed, γ = H(1/2, p) is of the form γ(t) = γ1(t)/|γ1(t)|, γ1(t) =
Fη(t)U1(p, t)ν1(h(t)) where η belongs to a compact set K ⊂ LI independent of the
choice of M . For s ∈ [1/2, 1], γ = H(s, p) still has the same form; for any given
t, s and p, either h(t) ∈ Z, h′(t) = 0 or h′(t) > M (up to a few transition points
which need not concern us). In the first case, local convexity of γ follows from
local convexity of H(1/2, p). In the second case, expanding det(γ1(t), γ

′
1(t), γ

′′
1 (t))

shows that this expression is positive provided M is large enough.

Let f̃ : K → LI , f̃(p) = H(1, p). We claim that if M is large enough then f̃
satisfies the hypothesis of Lemma 4.4. Indeed, for γ in the image of f̃ , let





g1(t)
g2(t)
g3(t)



 =





√
2/2 0

√
2/2

0 1 0

−
√

2/2 0
√

2/2



 (U1(p, 0))−1(Fγ(0))−1γ(t).
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From the above form for γ we have, for small t,





g1(t)
g2(t)
g3(t)



 ≈
√

2

2
r(p, s, t)





cos(2πh(t))
sin(2πh(t))

1



 .

Let t0(p) be the smallest t > 0 for which g1(t) = 0, g2(t) < 0; let t1(p) be the
smallest t > t0(p) for which g1(t) = 0, g2(t) > 0. For sufficiently large M these
are continuously defined and the convexity hypothesis will hold. This completes
the proof of the claim and of the lemma. �

5 Loops and stars

From now on our aim is to produce disjoint covers for functions f : K → LI or,
at least, to prove that f is homotopic to f̃ such that f̃ admits a disjoint cover.
We must therefore turn to the geometry of curves.

We now define nested dense open sets L(k)
±1 ⊂ L±1 for k ≤ 3; the complement

L±1 r L(k)
±1 has codimension k.

Let L〈0〉
±1 = L(1)

±1 ⊂ L±1 be the set of curves with no triple points or self-

tangencies. Notice that the sets L(1)
±1 have infinitely many connected components

since the number of double points does not change in a connected component of
these sets. Let L〈1,a〉

±1 ⊂ L±1 be the set of curves with exactly one self-tangency of
order 2, no triple points and no self-osculating points (and an arbitrary number of

double points). Let L〈1,b〉
±1 ⊂ L±1 be the set of curves with exactly one triple point

and no self-tangencies. The sets L〈1,a〉
±1 ,L〈1,b〉

±1 ⊂ L±1 are disjoint submanifolds of

codimension 1. Generically, the passage from one connected component of L(1)
±1

to another crosses L〈1,∗〉
±1 transversally and is a Reidemeister move of type II (resp.

III) if ∗ = a (resp. ∗ = b; [1]); Reidemeister moves of type I are not allowed in
LI . Figure 6 shows the possible Reidemeister moves in LI .

Define L(2)
±1 = L(1)

±1 ⊔ L〈1〉
±1 ⊂ L±1. Let L〈2,∗〉

±1 be the set of curves having:

(a) exactly one self-tangency, which is positive and of order 3, and no triple
points;

(b) exactly two self-tangencies, both of order 2, and no triple points;

(c) exactly one triple point where there is also a self-tangency of order 2;

(d) exactly two (unrelated) triple points;

(e) exactly one quadruple point;
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Figure 6: Reidemeister moves: type II on first line, type III on second line.

(b) (c) (d) (e)

Figure 7: Curves in L〈2,∗〉
±1 .

Figure 7 illustrates these situations. These sets are submanifolds of codimension
2. Finally, define L(3)

±1 = L(2)
±1 ⊔ L〈2,a〉

±1 ⊔ · · · ⊔ L〈2,e〉
±1 ⊂ L±1.

We already saw examples curves in L〈2,a〉
+1 in Figures 4 and 5; the second one

shows a surface transversal to L〈2,a〉
+1 . Notice that the self-osculating point may

be perturbed to become one single transversal double point or three transversal
double points (observe the central column); the reader should compare this with
perturbations of the real polynomial P (x) = x3, which may admit one or three
real roots.

A loop of a curve γ ∈ LI is a transversal double point (t0, t1) such that the
restriction γ|[t0,t1) is injective. We sometimes think of the loop as the interval
[t0, t1], the restriction of γ to this interval or even the image of this restriction. A
loop is direct (resp. reverse) if det(γ(t0), γ

′(t0), γ
′(t1)) is negative (resp. positive).

Figure 8 shows examples of loops.

A star is a curve γ in the same connected component of L(1)
+1 as one of the

infinite family of curves given in Figure 9. More precisely, a star has 2k + 1
double points; if k > 0, their images in the sphere are the vertices of a convex
polygon and, for any pair of adjacent vertices, there are two arcs of γ joining
them. Alternatively, a star is a curve in L(1)

+1 which admits loops (t0, t1) and
(t1, t0 + 1).

Let T0 be the closure (in L+1) of the set of stars and let T1 be its boundary.
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(a) (b)

t0t0 t1t1

Figure 8: A direct loop and a reverse loop.

Figure 9: Stars (k = 0, 1, 2, 3, . . .).

A curve γ ∈ L〈1,b〉
+1 with triple point (t0, t1, t2) is a trefoil if (t0, t1), (t1, t2) and

(t2, t0 + 1) are direct loops.

Lemma 5.1 The set T1 is the set of trefoils and is a manifold of codimension 1.
The set T0 is contractible and T1 is homotopically equivalent to S1.

Proof: We have to show that the only Reidemeister moves from a star to a
generic γ which is not a star pass through a trefoil. In order to do this, we
classify all possible Reidemeister moves starting at a star. Figure 10 shows how
a Reidemeister move of type II takes a star to another star (changing the value
of k) and how a Reidemeister move of type III takes a star (k = 1) to a generic
curve which is not a star passing through a trefoil. We prove that these are the
only possible moves.

Figure 10: Reidemeister moves starting at a star.

The only possible star from which a Reidemeister move of type III is possible
is the one shown in figure 10 (k = 1): indeed, a Reidemeister move of type III is
quite impossible if the curve does not form a combinatorial triangle. In order to
see that the only possible Reidemeister moves of type II are those indicated in
figure 10, notice that if γ is a star, its image is trapped in the union of triangles
shown in figure 11 (where straight lines indicate geodesics in the sphere).
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Figure 11: A star is trapped in a union of triangles.

For γ ∈ L(1)
+1 ∩ T0, let K(γ) ⊂ S2 be the closure of the region positively

surrounded by γ. The set K(γ) is shaded in Figure 9. Clearly, K(γ) is a convex
set. The definition of K(γ) can be continuously extended to T0: for γ ∈ T1, K(γ)
consists of the triple point only. Let k(γ) ∈ K(γ) be the baricenter of K(γ)
(recall that in order to find the baricenter of a convex subset of S2 we first find
its baricenter in R3 and then radially project it onto the sphere). For γ ∈ T1,
k(γ) is the triple point. Figure 11 shows that γ(t) 6= ±k(γ) for any γ ∈ int(T0)
and any t.

We construct a homotopy H : [0, 1] × int(T0) → int(T0), H(0, γ) = γ, H(1, ·)
constant equal to ν2. Given γ, let v1, v2, v3 be the only positively oriented
orthonormal basis with v3 = k(γ), γ(0) in the plane spanned by v1 and v3.
Reparametrizing, we may write

γ(t) =
1

√

1 + (u(t))2
((cos(4πt))v1 + (sin(4πt))v2 + u(t)v3) .

The condition for such a curve to be locally convex is that u′′(t) + 16π2u(t) > 0.
Set u(s, t) = su(t) + (1 − s) and (up to base point)

H(s, γ)(t) =
1

√

1 + (u(s, t))2
((cos(4πt))v1 + (sin(4πt))v2 + u(s, t)v3) .

By the linearity of the above condition, all such curves are locally convex.

We construct the universal cover of T1. Let T̃1 be the set of pairs (γ̃, t̃0) where
γ̃ : R → S

2 is a 1-periodic locally convex function with Fγ̃(0) = I, the restriction
γ = γ̃|[0,1] belongs to T1 and t̃0 ∈ R is a triple point, i.e., there exist t̃1, t̃2 ∈ RR,

t̃0 < t̃1 < t̃2 < t̃0 + 1, γ̃(t̃0) = γ̃(t̃1) = γ̃(t̃2). The projection Π : T̃1 → T1 takes
(γ̃, t̃0) ∈ T̃1 to γ = γ̃|[0,1] ∈ T1. This is a covering map by construction; the group
of deck transformations is isomorphic to Z, spanned by (γ̃, t̃0) 7→ (γ̃, t̃1) (where
t̃1 is defined as above).
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We claim that T̃1 is contractible. A homotopy H : [0, 1] × T̃1 → T̃1 taking T̃1

to a point starts with, for s ∈ [0, 1/4],

H(s, γ̃, t̃0) = (γ̃s, (1 − 4s)t̃0), γ̃s(t) = (Fγ̃(4st̃0))
−1γ̃(t+ 4st̃0).

This defines a deformation retract from T̃1 to F2, the set of flowers with 3 petals
([4]). We now use the interval s ∈ [1/4, 1/2] to reparametrize our curves so that
for s = 1/2 the triple point of H(s, γ̃, t̃0) will be t0 = 0, t1 = 1/3, t2 = 2/3. Next,
for s ∈ [1/2, 3/4], set H(s, γ̃, t̃0) = (H(1/2, γ̃, t̃0))

U , U = U(γ̃, t̃0) ∈ U1, so that

FH(3/4,γ̃,t̃0)(1/3) =





1 0 0

0 −1
2

√
3

2

0 −
√

3
2

−1
2



 , FH(3/4,γ̃,t̃0)(2/3) =





1 0 0

0 −1
2

−
√

3
2

0
√

3
2

−1
2



 .

Finally, the loops H(3/4, γ̃, t̃0)|I , I = [0, 1/3], [1/3, 2/3], [2/3, 1], are convex: we
use s ∈ [3/4, 1] to deform them to some fixed loop. This completes the proof of
the claim. Thus π1(T1) = Z and T1 has a contractible universal cover, proving
that T1 is homotopically equivalent to S1 and completing the proof of the lemma.

�

6 Eggs

A curve γ ∈ LI is an odd egg if there exists a reverse loop (t0, t1) such that
the image of γ is contained in the closed disk positively surrounded by the loop
(Figure 12, (a)). Notice that a star with a single double point is an odd egg. A
curve γ ∈ LI is an even egg if there exist two transversal double points (t0, t1)
and (t2, t3) with t0 < t1 < t2 < t3 < t0 + 1, det(γ(t0), γ

′(t0), γ
′(t1)) < 0 and

det(γ(t2), γ
′(t2), γ

′(t3)) < 0 such that γ|[t1,t2)∪[t3,t0+1) is injective and the image of
γ is contained in the closed disk positively surrounded by the above restriction
(Figure 12, (b)). Let E ⊂ LI be the set of all eggs (even and odd).

(a) (b)

Figure 12: Odd and even eggs.
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Lemma 6.1 Let K be a compact manifold and f : K → LI r (L−1,c ∪ T0) a

continuous map. Then f is homotopic in LI r (L−1,c ∪T0) to some map f̂ : K →
LI r (L−1,c ∪ T0 ∪ E).

Proof: Intuitively, we pull the creature out of the egg.

There exist open sets B1 ⊂ B2 ⊂ K, B1 ⊂ B2, such that:

(a) if p /∈ B1 then f(p) is not an odd egg;

(b) there exist functions t0, t1 : B2 → S1 with (f(p), t0(p), t1(p)) ∈ W for all
p ∈ B2;

(c) if f(p) is an odd egg then f(p)(t0(p)) and f(p)(t1(p)) are approximately equal
to the extrema of the reverse loop in the definition of odd eggs;

The functions t0 and t1 are indicated in Figure 12(a). Let φ : K → [0, 1] be a
continuous function with φ|B1 = 1, φ|KrB2 = 0. Define

H(s, p) =

{

f(p), p /∈ B2,

∆♯(sφ(p), f(p), t0(p), t1(p)), p ∈ B2.

This opens all odd eggs.

In order to get rid of the even eggs the construction is similar but with a
harmless subtlety. We can easily define B3 ⊂ B4 ⊂ K, B3 ⊂ B4, such that if
p /∈ B3 then f(p) is not an even egg. In B4 is not simply connected, it is not
clear, however, that continuous functions t0, t1, t2, t3 : B4 → S1 can be defined
since the two double points in the shell of the egg can trade places. Define
therefore t0, t1, t2, t3 : B̃4 → S1, where B̃4 is an appropriate double cover of B4.
Finally, define

H(s, p) =

{

f(p), p /∈ B4,

∆♯(sφ(p),∆♯(sφ(p), f(p), t0(p̃), t1(p̃)), t2(p̃), t3(p̃)), p ∈ B4,

where p̃ ∈ B̃4 is one of the two lifts of p; Lemma 3.3 guarantees that both choices
of p̃ obtain the same value for H . �
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Lemma 6.2 If γ ∈ L(3)
I r (L−1,c ∪ T0 ∪ E) then γ has at least one direct loop; if

γ ∈ L(2)
I r (L−1,c ∪ T0 ∪ E) then γ has at least two direct loops.

Proof: We first consider the case γ ∈ L(1)
I r L−1,c. Take t∗ ∈ S1. Let

t1 = sup{t ∈ S
1 | γ|[t∗,t] is injective}.

There exists a unique t0 ∈ [t∗, t1) with γ(t0) = γ(t1). The desired loop is (t0, t1).

Still in L(1)
I rL−1,c, we prove the existence of a direct loop. Let (tc, tb) be a reverse

loop. As in Figure 13 (a), draw a geodesic tangent to γ at γ(tb): the geodesic
transversally intersects the image of γ at γ(ta), ta ∈ (tc, tb). Take t∗ ∈ (tc, ta): we
claim that the construction above obtains a direct loop. More generally, assume
the restriction of γ to [t∗, tb] is as in Figure 13 (b): an injective function such that
the geodesic tangent to the image of γ at γ(tb) meets the image of γ transversally
at γ(ta), ta ∈ [t∗, tb); also, the image under γ of [ta, tb] plus the segment of geodesic
between γ(tb) and γ(ta) form the boundary of a convex closed disk D(tb) ⊂ S2.
Then, as t̃b increases starting from tb the above condition in preserved (and D(t̃b)
becomes smaller) until γ(t̃a) = γ(t̃b), obtaining a direct loop.

t∗

t∗

ta
ta

tb
tb

t̃a

t̃b

Figure 13: A configuration which obtains a direct loop.

The same construction and argument may be applied with time reversed: it
follows that the only curves in L(1)

I r L−1,c with a unique direct loop are those
for which both constructions (original and with reversed time) lead to the same
direct loop. Thus, the only curves with a unique direct loop are odd eggs.

If γ has no self-tangencies of odd order, perturb it near each self-tangency so
as to destroy the self-tangency without creating new self-intersections. Consider
a loop of the modified curve γ̂: we claim that the same double point is a loop for
the original curve γ. It suffices to show that self-tangencies can not be created
within loops. For direct loops this follows from the convexity of the restriction.
For a reverse loop (t0, t1), take the two geodesics tangent to γ at t0 and t1 as in
Figure 14 and a point γ(t2) between the intersections of these geodesics with the
image of γ. Consider a projective transformation taking the tangent geodesic to
γ at γ(t2) to infinity and the geodesic joining γ(t0) = γ(t1) with γ(t2). The image
of γ under this projective transformation is the graph of a function, completing
the proof in this case.
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γ(t2)

Figure 14: A reverse loop and its image under a projective transformation.

If γ has a single self-tangency (t0, t1) of order 3 start by perturbing a neigh-
borhood of the self-tangency in such a way as to create exactly one transversal
double point. Any direct loop of γ̂ except for (t0, t1) (if it is simple) yields a
direct loop of γ. Thus, the only situation where γ does not have a direct loop is
if (t0, t1) is the unique direct loop of γ̂; this completes the proof. �

Two loops (t0, t1) and (t̃0, t̃1) are disjoint if the intervals [t0, t1] ⊂ S1 and
[t̃0, t̃1] ⊂ S

1 are disjoint. Notice that this does not mean that the images of the
intervals under γ are disjoint.

A curve γ ∈ L(1)
I r (L−1,c ∪ T0 ∪ E) is a pseudo-egg if it belongs to the

connected component of one of the curves in the infinite family indicated in
Figure 15. More precisely, γ admits two non disjoint direct loops (t0, t1) and
(t2, t3), t0 < t2 < t1 < t3 < t0 + 1, and the restriction of γ to [t3, t0 + 1] is
injective. Let E+ be the set of eggs and pseudo-eggs.

Figure 15: Pseudo-eggs

Lemma 6.3 Let K be a compact manifold and f : K → LI r (L−1,c ∪ T0 ∪ E)
a continuous map. Then f is homotopic in LI r (L−1,c ∪ T0 ∪ E) to some map

f̂ : K → LI r (L−1,c ∪ T0 ∪ E+).

Proof: Consider the innermost loop in the spiral and pull it (using ∆♯) as in
Figure 16: this will either do a Reidemeister move of type III or of type II, in
either case destroying the pseudo-egg. �
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or

Figure 16: How to get rid of pseudo-eggs

Lemma 6.4 Consider a curve γ ∈ L(1)
I r (L−1,c ∪ T0 ∪ E+). For every direct

loop (t0, t1) of γ there is a disjoint direct loop (t2, t3). For every reverse loop
(t0, t1) of γ there is a disjoint (reverse or direct) loop (t2, t3). Furthermore, given
two non-disjoint direct loops (t0, t1) and (t2, t3), γ admits a loop (t4, t5) which is
disjoint from both (t0, t1) and (t2, t3).

The second part does not always hold if (t0, t1) and (t2, t3) are reverse: see
Figure 17, (a). In the last claim, the new loop in case (a) may be reverse: see
Figure 17, (b).

(a) (b)

Figure 17: Non-disjoint loops (t0, t1) and (t2, t3).

Proof: Assume γ ∈ L(1)
I so that every self-intersection is transversal. Let (t0, t1)

be a loop. It (t1, t0 + 1) is a loop then γ is a star. Otherwise, take t∗ = t1 + ǫ
(ǫ > 0, ǫ small). As in Lemma 6.2, let t3 be the smallest t > t∗ such that γ|[t∗,t]

is not injective and let t2 ∈ [t∗, t3) be such that γ(t2) = γ(t3), so that (t2, t3) is a
loop. Since (t1, t0 +1) is not a loop, t3 < t0 +1 and (t2, t3) is disjoint from (t0, t1),
as required.

Let (t0, t1), (t2, t3) be two non-disjoint loops. The case t0 = t2, t1 = t3 was
discussed in the previous paragraph; t2 = t1, t3 = t0 + 1 implies that γ is a star.
We may therefore assume t0 < t2 < t1 < t3 < t0 + 1, as in Figure 18.

Notice that (Fγ(t0))
−1Fγ(t3) ∈ J2. If the restriction γ|[t3,t0+1] is convex then

γ is a star (Figure 18 (b)). If the restriction is injective but not convex then γ is
either an egg or a pseudo-egg (Figure 18 (c)). Finally, if the above restriction is
not injective then a new loop disjoint from (t0, t1) and (t2, t3) exists (Figure 18
(d)). �
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(d)(c)(b)(a)

(t0, t1)(t2, t3)

Figure 18: Two non-disjoint loops.

7 Proof of the main results

Lemma 7.1 The connected components of LI r(L−1,c∪T0) are simply connected.

Proof: Let f : S1 → LI r (L−1,c ∪ T0) be a continuous map. We prove that
f is homotopic to a point. By Lemma 6.1 and transversality we may assume
f : S1 → L(2)

I r (L−1,c ∪ T0 ∪ E) and that f(p) ∈ L(1)
I except for finitely many

points p1, . . . , pM ∈ S1. In case M ≤ 2 add a few points to the list to guarantee
M ≥ 3. Reparametrize so that pk = k

M
∈ S1. By Lemma 6.2, for every p ∈ S1 the

curve f(p) has a direct loop. Let Vk = (k−1
M
, k+1

M
) and use a direct loop of f( k

M
)

to define t0,k, t1,k : Vk → S1. This is an open cover, but the loops are probably
not disjoint.

Let Uk = (3k−1
3M

, 3k+1
3M

). Let p⋆ = 2k+1
2M

, γ⋆ = f(p⋆) ∈ L(1)
I , t0 = t0,k(p⋆),

t1 = t1,k(p⋆), t2 = t0,k+1(p⋆) and t3 = t1,k+1(p⋆). If the loops (t0, t1) and (t2, t3) of
γ⋆ are equal or disjoint, set Uk+1/2 = ( k

M
, k+1

M
) and t∗,k+1/2(p) = t∗,k(p). If these

two loops are not disjoint, use Lemma 6.4 to obtain two loops (t4, t5) and (t6, t7)
of γ⋆ such that:

1. (t4, t5) is disjoint from (t0, t1);

2. (t6, t7) is disjoint from (t2, t3);

3. (t4, t5) and (t6, t7) are either equal or disjoint.

Set Uk+1/3 = ( k
M
, 3k+2

3M
) and Uk+2/3 = (3k+1

3M
, k+1

M
); use (t4, t5) and (t6, t7) to define

(t0,k+1/3, t1,k+1/3) and (t0,k+2/3, t1,k+2/3), respectively. Thus, f admits a cover by
disjoint loops. From Lemma 4.5, f is homotopic to ν2 ∗ f .

On the other hand, each connected component of II is simply connected and
therefore f is homotopic to a point in II . By Proposition 2.1 f is homotopic to a
point in LI . The homotopy can be constructed as follows: consider an extension
f̂ : D2 → II of f ; use ∆♯ to pass from f to FN ◦ f and complete the homotopy
with FN ◦ f̂ . For sufficiently large N , this homotopy remains in LI r (L−1,c∪T0).

�
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Theorem 2 Each connected component of LI is simply connected.

Proof: It is well known that L−1,c is contractible. Since T0 ⊂ L+1, we just
proved that in Lemma 7.1 that L−1,n is also simply connected. Finally, we use
Seifert-Van Kampen to compute π1(L+1). Let A = L+1 r T0 and fatten T0 a bit
to obtain an open set B: since T0 is contractible and T1 = ∂T0 is a connected
submanifold of codimension 1, B is simply connected and A ∩ B is connected.
Thus, L+1 = A ∪B is also simply connected. �

Lemma 7.2 Let γ ∈ L(1)
I r (L−1,c ∪ T0 ∪ E+). Let f : D2 → LI r T0 be the

function constant equal to γ. Consider a disjoint cover by loops C of f |S1 without
two consecutive reverse loops. Then there exists f̃ : D2 → LI r T0 homotopic to
f with fixed boundary and an extension C̃ of C to a disjoint cover by loops of f̃ .

Proof: Without loss of generality the open sets in the cover are intervals. If
two neighboring intervals have identical loops, fuse them; may therefore assume
without loss of generality that S1 is covered by a cycle of loops, where two adjacent
loops are disjoint and no two adjacent loops are both reverse. More: if two non-
adjacent intervals use the same loop, the corresponding open set can be enlarged
to cross the disk (Figure 19,(a)). We may therefore assume all loops to be distinct.

V0
V0

Vi Vi
Ṽ

(a) (b) (c)

Figure 19: Long cycles can be decomposed into short ones.

If the cycle 7 or more loops, it can be decomposed into cycles of size 6 or less.
Indeed, consider a cycle of length n > 6; let ℓ0 be a direct loop in the cycle and
let ℓ1, ℓ2, ℓ3, ℓ4 be its neighbors (numbered clockwise). Let i = 3 or 4 such that ℓi
is direct. If ℓ0 and ℓi are disjoint, extend the open sets V0 and Vi to intersect in
the center, thus subdividing the original cycle into one of length i+1 and another
of length n− i + 1 (Figure 19,(b)). If ℓ0 and ℓi are not disjoint, use Lemma 6.4
to obtain a loop ℓ̃ disjoint from both: introduce an open set Ṽ with associated
loop ℓ̃ in the middle of the disk, intersecting V0 and Vi only among the originally
defined loops. This subdivides the original cycle into two cycles of lengths i+ 2
and n− i+ 2 (Figure 19,(c)).
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Cycles of 2 or 3 loops have all loops disjoint and therefore admit a disjoint
cover as they are, no homotopy needed. We are left with considering cycles of
length 4, 5 or 6.

From now on we argue by contradiction, searching for the shortest counterex-
ample. If two non-adjacent loops are disjoint, not both reverse, construction (b)
in Figure 19 can be applied, decomposing our cycle into two shorter ones. We
may therefore assume that non-adjacent loops not both reverse are not disjoint.

We first consider the case n = 6. If two opposite loops ℓi and ℓi+3 are both
direct then the construction in Figure 19 (b) or (c) can be applied, decompos-
ing our cycle. We may therefore assume that ℓi is direct for i even and re-
verse for i odd. Consider the intervals Ii = [t0,i, t1,i] ⊂ S1: I0, I2 and I4 are
pairwise neither disjoint not nested (one contained in the other). There are,
up to reparametrization and permutation, only two possibilities: I0 = [0, 3/6],
I2 = [1/6, 4/6], I4 = [−1/6, 2/6] or I0 = [0, 3/6], I2 = [2/6, 5/6], I4 = [−2/6, 1/6].
In either case, I3 must be disjoint from both I2 and I4 and neither disjoint nor
nested with I0, a contradiction.

Consider now the case n = 5, with loops ℓ0, . . . , ℓ4. We may assume without
loss of generality that ℓ0, ℓ2 and ℓ3 are direct loops, ℓ2 and ℓ3 disjoint but ℓ0 not
disjoint from either. We may again assume that I0 = [1/10, 4/10], I2 = [0, 2/10],
I3 = [3/10, 5/10] and that the image of [0, 5/10] under γ is as in Figure 20. Pull
the loop ℓ0 (or, in other words, apply ∆♯(s, γ, 1/10 − ǫ, 4/10 + ǫ)) in the center
of the disk D2 to define f̃ . The loops ℓ0, ℓ2, ℓ3 survive in D2 and near the center
of D2, ℓ0 becomes disjoint from ℓ2, ℓ3. The loops ℓ1 and ℓ4 were not affected and
remain disjoint from ℓ0. We therefore have the disjoint cover in Figure 20.

ℓ0

ℓ0

ℓ2

ℓ2ℓ3

ℓ3 V0 V1

V2V3

V4

Figure 20: The case n = 5

Finally, for n = 4, we may assume that ℓ0 and ℓ2 are direct. As in Figure 21,
pulling either ℓ0 or ℓ2 (or both) makes them disjoint. The disjoint cover in Figure
21 completes the proof. �
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ℓ0

ℓ0

ℓ2

ℓ2

V0

V1

V2

V3

Figure 21: The case n = 4

Lemma 7.3 Every continuous map f : S
2 → LI r (L−1,c ∪ T0) is homotopic to

ν2 ∗ f .

Proof: It is enough to prove that f is homotopic to some f̃ which admits a
disjoint cover. By Lemmas 6.1, 6.3 and transversality we may assume f : S

1 →
L(3)

I r (L−1,c∪T0∪E+). Again by transversality, we may assume that there exists

a finite triangulation of S2 such that if f(p) /∈ L(2)
I then p is a vertex of the

triangulation and if f(p) /∈ L(1)
I then p belongs to an edge. By Lemma 6.2, there

exist open neighborhoods Vi of the vertices and direct loops t0,i, t1,i : Vi → S1.
As in the proof of Lemma 7.1, there exists a disjoint cover of each edge by loops
without two consecutive reverse loops. It remain to fill in the faces: this is
precisely what Lemma 7.2 does. �

Theorem 3 We have π2(L+1) = Z2, π2(L−1,n) = Z, H2(L+1; Z) = Z2 and
H2(L−1,n; Z) = Z.

Proof: By the previous lemma, f : S2 → L−1,n is homotopic to a point in L−1,n

if and only if it is homotopic to a point in I−1,n. In other words, the inclusion
L−1,n ⊂ I−1 induces an isomorphism between π2(L−1,n) and π2(I−1) = Z. By
Hurewicz theorem, inclusion also yields an isomorphism between H2(L−1,n; Z)
and H2(I−1; Z) = Z. In other words, H2(L−1,n; Z) is generated by x.

Similarly, H2(L+1 r T0; Z) is generated by x. Use the normal bundle to T1 to
define open sets A and B, T0 ⊂ A, L+1 r T0 ⊂ B such that the above inclusions
and T1 ⊂ A ∩ B are homotopy equivalences. Write the Mayer-Vietoris sequence
(coefficients in Z):

H1(A) ⊕H1(B) → H1(A ∩ B) → H2(A ∪B) → H2(A) ⊕H2(B) → H2(A ∩ B)

We know that H1(A) = H1(B) = 0, H1(A ∩ B) = Z, H2(A) = 0, H2(B) = Z,
H2(A ∩ B) = 0. Thus H2(A ∪ B) = Z2. In the proof of Lemma 5.1 we saw
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a geometric description of the universal cover and therefore of the generator of
H1(A∩B): appying the map H1(A∩B) → H2(A∪B) to this generator obtains
f2 ∈ H2(L+1), the intersection number with F2 ⊂ T1. Thus, H2(L+1 is generated
by x and f2. Again by Hurewicz theorem, π2(L+1) = Z2 is generated by g2 and
ν2 ∗ g2. �

8 Final remarks

It may be possible to carry further methods used in this paper to computeH∗(LI),
but the kind of case-by-case analysis in Section 6 would have to be replaced by
something less accidental. We hope to do this in [3] to prove that the classes xn

and f2n are generators of H∗(L±1) and that L+1 and L−1,n have the homotopy
type of ΩS3 ∨ S2 ∨ S6 ∨ S10 ∨ · · · and ΩS3 ∨ S4 ∨ S8 ∨ S12 ∨ · · · , respectively.
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