[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] ESTRATÉGIA VENCEDORA!



a estrategia que sempre ganha eh vc ser o segundo
jogador e tirar uma pedra de cada vez..... 



--- Johann Peter Gustav Lejeune Dirichlet
<peterdirichlet2003@yahoo.com.br> escreveu:

> Bem, neste tipo de proposicao, quando se fala em
> estrategia vencedora, ela deve valer para todos os
> casos, e nao para "os casos de vacilo" do
> adversario.
> 
> 
> Mas enfim...
>  Há uma estrategia que vale em todos os casos de
> pilhas de pedras.
> Vamos colocar um caso diferente deste:
> as pilhas tem 1,2,3,4,5,6,7.
> 
> Ou, como todo bom computeiro, podemos escrever estes
> valores em binario:
> 
> 001
> 010
> 011
> 100
> 101
> 110
> 111
> 
> Agora vamos somá-las, de uma maneira nem um pouco
> convencional:
> 
> 001
> 010
> 011
> 100
> 101
> 110
> 111
> ***+
>    444
> 
> Veja que todas as somas deram pares. Com isto, a
> pessoa que jogar agora perdeu o jogo(isso se você e
> o
> seu adversario nao vacilarem, como eu estou
> supondo).
> 
> Suponha que você, na sua vez de jogar, ciente deste
> fato fatídico, tira 3 pedras do montinho de 7. 
> Agora temos esta distribuicao:
> 
> 
> 001
> 010
> 011
> 100
> 101
> 110
> 010
> ***+
>     343
> 
> Como o 3 e o outro 3 (ensanduichando o 4) sao
> impares,
> a ideia sera transforma-los em numeros pares, para
> assim te manter no desespero, hahaha!
> Que tal tirar 101? De fato, 
> 
> 343
> 101
> ***-
>     242
> 
> Agora e so encontrar de onde tirar 101(ou 5,
> interprte
> como quiser).
> Fácil: 
> 
> 001
> 010
> 011
> 100
> 101 -- Esvazie essa!
> 110
> 010
> 
> Veja que a subtracao tambem nao e convencional :P
> Aí teremos algo como
> 
> 001
> 010
> 010
> 011
> 100
> 110
> ***+
>    242
> 
> E assim vai. Com esta estrategia voce estara fadado
> a
> perdiçao, hahahaha(risadas mais malignas aqui...).
> 
> Mas aplicando neste caso (7,7), da o que voce disse:
> sempre tirar para deixar os montes iguais.
>  
> 
> --- Chicao Valadares <chicaovaladares@yahoo.com.br>
> escreveu:
> 
> > > Existem duas pilhas com 7 pedras cada. Na sua
> vez,
> > > um jogador pode retirar 
> > > quantas pedras ele quiser, mas somente de uma
> das
> > > pilhas. O perdedor é o 
> > > jogador que não puder jogar. Quem tem a
> estratégia
> > > vencedora?
> > 
> > - Note que, se em um momento qualquer de uma nova
> > rodada  o jogador X tiver mais pedras que o
> jogador
> > Y,
> > basta o jogador X tirar uma pedra de cada vez e
> vice
> > versa.Ou seja , espera-se o vacilo de outro
> jogador
> > tirando mais d euma pedra.
> > 
> > - Sabendo-se disso entao o jogador X e o jogador Y
> > resolvem tirar uma pedra de cada vez(jogador x
> > sempre
> > comeca jogando em uma rodada).Sendo assim , sempre
> o
> > jogador Y ganha, pois na vez do jogador X ele nao
> > tera
> > mais pedras pra jogar.
> > 
> > Enfim basta ser o segundo jogador e sempre tirar
> uma
> > pedra de cada vez pra sempre ganhar.
> > 
> > Sendo o primeiro a jogar, vai depender das
> > circunstancias do jogo.  
> > 
> > 
> > 
> > "O Binômio de Newton é tão belo como a Vênus de
> > Milo.
> > O que há é pouca gente para dar por isso... "
> > Fernando Pessoa - Poesias de Alvaro Campos
> > 
> >
>
_________________________________________________________________
> > As informações existentes nessa mensagem e no(s)
> > arquivo(s) anexado(s) 
> > são
> > para uso restrito, sendo seu sigilo protegido por
> > lei. Caso não seja
> > destinatário, saiba que leitura, divulgação ou
> cópia
> > são proibidas. 
> > Favor
> > apagar as informações e notificar o remetente. O
> uso
> > impróprio será 
> > tratado
> > conforme as normas da empresa e a legislação em
> > vigor. Agradecemos sua
> > colaboração.
> > 
> > 
> > The information mentioned in this message and in
> the
> > archives attached 
> > are
> > of restricted use, and its privacy is protected by
> > law. If you are not 
> > the
> > addressee, be aware that reading, disclosure or
> copy
> > are forbidden. 
> > Please
> > delete this information and notify the sender.
> > Inappropriate use will 
> > be
> > tracted according to company's rules and valid
> laws.
> > Thank you for your
> > cooperation.
> > 
> > 
> > 	
> > 
> > 
> > 
> > 	
> > 		
> >
>
_______________________________________________________
> > 
> > Novo Yahoo! Messenger com voz: ligações, Yahoo!
> > Avatars, novos emoticons e muito mais. Instale
> > agora! 
> > www.yahoo.com.br/messenger/
> >
> 
=== message truncated ===


"O Binômio de Newton é tão belo como a Vênus de Milo.
O que há é pouca gente para dar por isso... "
Fernando Pessoa - Poesias de Alvaro Campos

_________________________________________________________________
As informações existentes nessa mensagem e no(s) arquivo(s) anexado(s) 
são
para uso restrito, sendo seu sigilo protegido por lei. Caso não seja
destinatário, saiba que leitura, divulgação ou cópia são proibidas. 
Favor
apagar as informações e notificar o remetente. O uso impróprio será 
tratado
conforme as normas da empresa e a legislação em vigor. Agradecemos sua
colaboração.


The information mentioned in this message and in the archives attached 
are
of restricted use, and its privacy is protected by law. If you are not 
the
addressee, be aware that reading, disclosure or copy are forbidden. 
Please
delete this information and notify the sender. Inappropriate use will 
be
tracted according to company's rules and valid laws. Thank you for your
cooperation.


	



	
		
_______________________________________________________ 
Novo Yahoo! Messenger com voz: ligações, Yahoo! Avatars, novos emoticons e muito mais. Instale agora! 
www.yahoo.com.br/messenger/
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================