[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] RES: [obm-l] séries numéricas



Parece que amigo Claudio nao gosta muito de integrais, risos. Mas as vezes simplifica muito, e o teste da integral  eh facil de entender. Ele compara a area entra a curva da funcao f(x) definida em [1, oo) com a area da "escada" que corresponde aa sequencia f(n). So serve quando f eh monoticamente decrescente e positiva (se for negativa, eh so tomar a simetrica).
 
Mas a solucao do Paulo eh mesmo linda!
 
Podermos tambem chegar a mesma conclusao utilizando o fato de que, se a_n eh monoticamente decrescente e positiva, entao Soma a_n converge se, e somente, se Soma 2^k a_(2^k) converge.
 
So lembrando, o Teste M de Weierstrass tem outro objetivo, aplica-se a sequencia de funcoes. Diz que se f_n for uma sequencia de funcoes reais ou complexas para a qual exista uma sequencia de reais positivos M_n tais que |f_n| <= M_n para todo n e Soma M_n converge, entao f_n converge uniformemente para alguma funcao f.
 
O Paulo utilizou o teste da comparacao: se 0 <= a_n <= b_n para todo n e Soma b_n converge, entao Soma a_n converge.Se Soma a_n diverge, entao Soma b_n diverge. 
 
Abracos
artur 
 
-----Mensagem original-----
De: owner-obm-l@mat.puc-rio.br [mailto:owner-obm-l@mat.puc-rio.br]Em nome de Claudio Gustavo
Enviada em: terça-feira, 10 de abril de 2007 22:13
Para: obm-l@mat.puc-rio.br
Assunto: Re: [obm-l] séries numéricas

  Muito legal essa solução! E usa a mesma idéia da demonstração da série harmônica.
  Obrigado.

Paulo Santa Rita <paulo.santarita@gmail.com> escreveu:
Ola Claudio e demais
colegas desta lista ... OBM-L,

O carissimo Artur ja resolveu a questao usando o teste da integral.
Mas nao ha problema em conhecer uma outra maneira de resolver a mesma
questao. Aqui vai uma forma mais elementar :

Como 3*log(3) < 4*log(4) e 4*log(4) =< 4*log(4), podemos inverter as 2
desigualdades e, a seguir, soma-las. Isto dara :

1/(3*log(3) ) + 1/(4*log(4)) > 1/(4*log(4)) + 1/(4*log(4))
1/(3*log(3) ) + 1/(4*log(4)) > ( 1/(2*log(2)) )*(1/4 + 1/4)
1/(3*log(3) ) + 1/(4*log(4)) > ( 1/(2*log(2)) )*(1/2)

Como 5*log(5) < 8*log(8) , 6*log(6) < 8*log(8) , 7*log(7) < 8*log(8) e
8*log(8) =< 8*log(8),
podemos inverter as 4 desigualdades e, a seguir, soma-las. Isto dara :

1(5*log(5)) + 1/(6*log(6)) + 1/(7*log(7)) + 1/(8*log(8)) > (
1/(2*log(2)) )*(1/3)

Partindo agora de 9*log(9) < 16*log(16), 10*log(10) < 16*log(16) ...
ate finalizar em 16*log(16) =< 16*log(16), invertendo cada uma das 8
desigualdades e somando-as depois, chegaremos facilmente a :

1/(9*log(9)) + 1/(10*log(10)) + ... + 1/(16*log(16)) > ( 1/(2*log(2)) )*(1/4

Somando tudo, e facil ver que :

1/2(log(2)) + 1/(3*log(3)) + ... + 1/(N*(log(N)) + ... > (
1/(2*log(2)) )*(1 + 1/2 + 1/3 + ... )

Como a serie da direita consabidamente diverge, pelo criterio de
comparacao ( se nao me falha a memoria e o "Teste M de Weiertrass" )
segue que a serie da esquerda tambem diverge.

Generalizano esta tecnica e prove o caso (N*log(N))^r

E com os melhores votos
de paz profunda, sou
Paulo Santa Rita
3,150B,100407

Em 07/04/07, Claudio Gustavo escreveu:
> Oi. Sou Claudio Gustavo e esta é a primeira vez que escrevo para esta
> lista. Gostaria de alguma dica para demonstrar que a soma de n=2 até
> infinito de 1/(n*logn) diverge e a soma 1/(n*(logn)^r), com r mairo que 1,
> converge. Tem alguma possibilidade de comparar com as somas harmônicas? Pois
> a soma 1/n diverge e 1/(n^r) converge para r maior que 1.
> Obrigado.

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================

__________________________________________________
Fale com seus amigos de graça com o novo Yahoo! Messenger
http://br.messenger.yahoo.com/