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Abstract

We show how the structures of formalized statistical sciences as pre-
sented in [1] can be subsumed in more primitive structures [2, 3] by abol-
ishing some of the original distinctions. One of the byproduct of this
process is a formalization of figure-ground relationships reminiscent of
gestalt notions. Knowledge of [1] is assumed.

1 Introduction

In Reference [1] we developed a general formalism for statistical sciences, ax-
iomatizing the processes of state preparation and state copy testing. We've
paid for our attention to the details of empirical procedures by the complexity
of the formalism. More elegant formalisms exist at the cost of ignoring some
distinctions. Among the various formalisms for empirical sciences that exist in
the literature, the one closest to ours is most probably that of empirical logic
of the Amherst school [2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13] . Empirical logic
is based on the primitive notion of an operation; that is, a series of acts which
invariably lead to one and only one outcome from a previously defined set. No
formal distinction is made as to whether such a procedure is one which prepares
a state or one which performs a test on a state already prepared. Also, no
formal distinction is made between what we in Reference [1] call an observation
and what we call an exit. In this paper we show that a general formal statistical
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theory can be subsumed within a structure where these distinctions are abol-
ished. We first abolish the distinction between an observation and an exit by
introducing a formal background state to which a copy of a state is transferred
in case an observation is realized in a test. As a second step we eliminate state
preparations by considering them as certain types of exits.

There is a surprising richness in the first subsumption, at the heart of which
we detect a formalization of figure-ground relationships reminiscent of some
ideas of gestalt psychology. This is a welcome byproduct of the rather technical
construction that we elaborate in the first section. The second subsumption,
treated in the second section is almost trivial to implement.

One sees in present day literature a remarkably large number of formaliza-
tions of empirical scientific methodology. The complexity of the theme can only
partially explain this fact. Another phenomenon seems also to be involved.
Each formalism expresses, so to speak, only a certain aspect of the methodol-
ogy and downplays others. The various formalisms seem to be largely connected
by relations of mutual subsumption. One notices that one formalism is often
definable in another and vice versa. This state of affairs, confusing at the begin-
ning, is rather fortunate, since the details of effecting such subsumptions clarify,
by explicit mathematical structures, a certain set of otherwise only linguisti-
cally formulated ideas whose direct formulation would leave something to be
desired. The appearance of gestalt concepts in our first subsumption is a case
in point. Apparently certain constructions need to reside in a more comprehen-
sive framework, and only by existing as a sort of mathematical epiphenomena
give any insight into what they model. It is in this spirit that we present our
subsumptions.

Knowledge of Reference [1] is assumed. Reference thereto shall be designated
by prefixing “I” to various items; thus “Theorem 1.3” refers to Theorem 3 of that
work. Certain of our results have straightforward but tedious demonstrations,
and such are not presented in this paper. The author will gladly supply any
interested reader with these details.

2 First Subsumption: operationalization

Consider a formal statistical theory (Definition 1.3). We wish to abolish the
distinction between an observation and an exit by introducing a new fictitious
state w which we whimsically refer to as either the useless or the background
state, and consider that a state copy gets transformed to w after observations,
whereas exits maintain their previous properties. It seems plausible that such a
construction can be carried out, and has been done so in other situations [14].
However, before doing so, we must first modify the formalism of Reference [1]



to allow only exits. The first modification is in the concept of form algebras
(Definition 1.1 and I1.2).

Definition 1 An operation form algebra G is a universal algebra with three
binary operations V , +, and concatenation; and a distinguished subset G,.. The
following axioms are satisfied:

1. G, is a real associative algebra under (+,concatenation) with a unit which
we denote by I. We denote by 0 the zero of G,.. The domain of + is
G, x G,

2. The join V is universally defined, free, associative, and commutative. By
free we mean that every element of G can be written uniquely as x1V-- -V,
with x; € G,

3. Concatenation is universally defined, has 1 for identity, is of course asso-
ctative, and distributes over V and + on both sides.

We write G, for the set of elements of type z1 V -+ V .

These axioms are a straightforward adaptation, with some convenient alge-
braic simplification, of the axioms of Definition I.1.

One rather simple result is that given a form algebra F' the purely operational
part is an operation form algebra, that is, take G,, = F, and consider joins only
of elements of F,. One has to extend the domain of concatenation, but this
offers no problems.

Definition 2 The operation form algebra defined in the previous paragraph
starting from a form algebra F we call, with a slight abuse of language, the
operation subalgebra of F'.

Definition 3 A substitution operation form algebra is a pair (G, W) where G
is an operation form algebra and W is a real vector space. The following axioms
are satisfied:

1. There is a bilinear map (-,-) : W x G — R separating points of W and
which sums on joins: (w,x1 V-V xn) = > (w, ;).

2. There is an injective linear map from W to the space of right acting linear
transformations G, — G, which commute with concatenation on the left
by elements of G,.. We denote by (w,-) the transformation corresponding
toweW.



3. (u,z{w,-)) = (u,z){w,I).

4. Given y € G,, the adjoint map to concatenation by y defined by
(w,yx) = (Y'w, x) satisfies y W C W and we have for z,y € G, w € W:

z({w, )y = x<y/wv )

This again is a straightforward adaptation of Definition 1.2 where (w, x) stands
for what in the old terminology would be written as (w, z1).

In Reference [1], the separating condition of (1) was overlooked and should
have been stated for technical convenience. A consequence of this condition is:

Proposition 1 The map j : W — G, given by jw = K{w, ) is injective.

We note that since z(w,-) = (2I){w,-) = z(I{w,-)) we need know only I{w,-)
to define the action of (w,-) on any element.

Given a substitution form algebra (F,V’) one can consider the operational
part of it as a substitution operation form algebra. The algebra G is as described
at the end of Definition 1. Set W = V and define the new pairing (v, -) as (v, -1)
extending (-, -) naturally over joins. The axioms are readily verified.

Definition 4 The substitution operation form algebra defined in the previous
paragraph we call the operation subalgebra of (F, V).

A statistical theory based only on operations can now be defined. An examina-
tion of Axioms I.1 to 1.9 shows however that some modifications are necessary.
The exhaustion axiom loses meaning. If an operation is not exhaustive, then
it rejects some copies, but to be consistent in our outlook we must view the
rejected copy as a transformed copy within our system, for otherwise rejection
would be viewed as a type of observation and not as an exit. On the other hand,
given a part of an operation there is no a priori way of completing it uniquely to
an exhaustive one. There are thus two possible axiomatizations; either we deal
only with exhaustive operations, forcing us to reduce the truncation axiom to
the simple case of truncating dummies, or we maintain general operations and
postulate the existence of some exhaustion of any given operation. Either one
has certain small advantages but on the whole it doesn’t seem to matter which
one we choose. We shall adopt the first viewpoint to conform to what seems
to be the prevailing attitude in the literature. In view of the remark following
Proposition 1 we also find it convenient to recast the conversion Axiom 1.6 into
an existence axiom of state preparation.



Definition 5 A formal statistical operation theory is a substitution operation
form algebra (G, W) with the following additional structure:

1. A conver subset S C W called the set of states;

2. A subset Q C G called the set of operation forms.

We set Q(m) = Q NGpy. Gven E=x1V -V, € Q(m) we say each x; is
an atom or a result or an outcome of E and we write x; € E. Each subjoin F
of E we call an event of £ and we write F C E. We denote by Q the set of all
events of operation forms and set Q) = Q N G-

These objects obey a series of axioms.

EXISTENCE AXIOMS:

Axiom 1 Stochastic splitters exist.
IFA= (A Am), 0< N, SN =1 then Zy = IV -V ALL € Quy-

Axiom 2 States can be prepared.
If o € S then I{o,-) € Q).

TRANSFORMATION AXIOMS:

Axiom 3 Operation forms can be condensed.

Let E € Q, F C E, and let H be the sum of the atoms of F' then
OV(E\F)VHEeQ.

Axiom 4 Dummies can be truncated.

Let xV E € Q and suppose x'S = {0} then E € Q.

Axiom 5 Operation forms can be composed.
IfE.F € Q and x is an atom of E then E{x}F = (E\ z)V aF € Q.

STATISTICAL AXIOMS:

Axiom 6 States are weights.
Let E€Q, FCE and o € S then (0, F) € [0,1] and (0, E) = 1.

Axiom 7 Exits are state transformers.

Let x be an atom of E € Q, and o € S. If (0,2) # 0 then ﬁx’a es.



Axiom 8 States are separated.
If for all x € Q(l), (o,2) = (T,2) then 0 = T.

As in Reference [1], these axioms could also have been stated as derivation
rules and one can talk, after the obvious straightforward modifications, of the
corresponding deductions in the deductive system and the apparatus deductive
system (Definition 1.5).

It should be remarked that the statistical axioms are stable under the deduc-
tive system; that is, if we have a set of states and a set of forms satisfying Axioms
6-8 then any new forms that may be introduced by Axioms 1-5 continue satis-
fying Axioms 6-8. This fact was implicitly used in Reference [1] though never
proved there. We formally state this result here, whose proof is straightforward.

Theorem 1 The statistical axioms are stable under the deductive theory.

There are two ways of viewing a formal statistical theory T = (F, S, P) as a
formal statistical operation theory. The first, utilizing Theorems 1.1 and 1.2,
uses the operation subalgebra (G, V) of (F,V) and for Q takes the exhaustive
operation forms of P. The reader can easily verify the axioms.

Definition 6 The formal statistical operation theory described in the previous
paragraph we shall call the operation subtheory of T.

The second way is to perform a subsumption as shall be now described.

Following the intuitive idea of the background or useless state, let W = VR
where we set w = (0, 1) to correspond to the background state and so define the
augmented set of states S to be the convex span of S U {w} considering S as
imbedded in W in the natural way. What relation must w have to the original
structure? Clearly for p € O(1) we shall require that p+xo = w for all o for which
(o,p) # 0. Without presenting a detailed argument here, it turns out that the
only consistent universal way to assign numbers to {w,p) is to set (w,p) = 0,
including (w,1) = 0. This means also that every exit, including Id must be
opaque to w. The existence observation 1 and the do-nothing operation Id
must thus lose their usual meaning and be replaced by yet another new entity.
We thus introduce an element I which will become the unit of the subset G, of
an operation form algebra and which handles existence and do-nothing notions.
Finally forms I{w, ), w € W are yet a third type of new entity since its action
must detect existence, which 1(w,-) no longer does. No further new elements
are in fact now needed and we define:

Gr=F,eoF.oWaeR=FaeF.eVeRaeR (1)



A general element z € G, we express as (p, ¥, a,s,r) withp € F,, ¢ € F.,a €V,
s,r € R. In particular we have I = (0,0,0,0,1) and I{(a,s),-) = (0,0,a,s,0).
We also set Q = (0,0,0,1,0). To save on notation we shall, until the end
of this section, restrict the lower case letter p to represent an elements of Fj,
the lower case Greek letter ¢ , to represent an elements of F,, and the lower
case letters a, b to represent elements of V. Thus we can conventionally write
r=p+1Y+a+ sQ+rl, where s and r are reals.

Define now the multiplication rule for concatenation by Table 1.

| p D G Q
p| 0 0 pa) p
Y| vp o Py YPlia,) Yl
a | {a,p) Y'a (a,1)a (a,1)Q
Q| o0 0 a Q

Table 1: Concatenation

Define the pairing (-,-) : W x G — R by Table 2.

a | {a,p) (a,v1) (a,1)(1) (a,1) (a,1)
Q| o 0 (b,1) 1 1

Table 2: Pairing

The reader is invited to convince himself or herself that these tables consti-
tute the unique possible assignments consistent with the viewpoint expounded
above. It is now possible to calculate x’(-) which we give in Table 3.

7(4) b Q
p | (bp) 0
v Wb 0
a | (b,1)a a
Q|10 Q
I b Q

Table 3: Adjointness



Introduce now a free join V and extend the structures already defined in G,
to an operation form algebra and the pairing (-,-) to (-,-) : W x G — R in the
natural fashion.

Theorem 2 The pair (G, W) defined above is a substitution operation form
algebra.

Definition 7 The substitution operation form algebra (G, W) constructed above
we call the operationalization of the substitution form algebra (F, V).

We now turn our attention to a statistical theory T' = (F,V, P) and construct
the corresponding statistical operation theory 7' in (G,W). As was already
discussed, we have S = conv(S U {w}). To each test form

O=pV---Vp, VO V---Vb, P

we must associate an operation form in Q Now reinterpreting each atom of
O as an element of G, is not enough; first of all ® may not be exhaustive, so
we must first pass on to 6= QA-pr+...—pn—61+...—0,1) VO, but
still, with 6 exhaustive, the same expression in G is not exhaustive since each
element annihilates w . We set

©=(I-Id)Vve.

The element I — Id = (0,—1Id, 0,0, 1) represents that part of the do-nothing
notion which pertains to G and not to F. In particular, Id = (I -Id) VId is a
two-exit operation which separates out the figure from the background, or the
useful from the useless. The set of elements of the form ©, © € P do not satisfy
the axioms of a statistical operation theory since condensations of observations
and exits were not allowed in 7 and are now allowed. To form T we must
therefore generate new forms. Let therefore Q be the set of operation forms
generated by the deductive system of operation theories starting with the forms
0,0 ¢cP.

Theorem 3 The system (G, W, S, Q) satisfies the azioms of a formal statistical
operation theory.

Definition 8 We call the formal statistical operation theory T defined above
the operationalization of the formal statistical theory T'.

Having subsumed the general theories in operation theories, we must now pro-
vide criteria by which an operation theory can be identified as a subsumed



general theory, being thus able to descend to the previous level of specific de-
tail. A surprising amount of complexity appears in such a descent. Our criteria
could possibly be simplified, however our aim in not to achieve maximal ele-
gance at the moment, but to provide a demonstration that a return is possible
with criteria that exhibit somehow the essence of the subsumption process as
detected in the resulting structure. We first treat substitution operation form
algebras.

For the next five propositions we assume that (G, W) is the operationaliza-
tion of a substitution form algebra (F, V).

Proposition 2 Subalgebra G, contains elements U, L, and D satisfying the
multiplication law given by Table 4.

O~

©co Qg
wlclwliv
o o gl

Table 4: Figure-ground or Utility Subalgebra

Proof. Put U =1d, L = Q, D = 1, and apply Table 1. We list here some
useful properties of these operators:

Ur = p+sl+v¢+1{a,-)+rId (2)
2U = ¢Y+rId+a (3)
Lr = a+(s+7)Q (4)
L = p+yl+({a,1) +s+7)Q (5)
Dz = (s+7r)1+1{a,-) (6)
zD = Yl+rl+{a,1) (7)
U'(a,s) = (a,0) (8)
L'(a,s) = (0,{(a,1)+s) (9)
D'(a,s) = (0,{a,1)) (10)

We see that U acts as a filter for figures, L is the preparation of the back-
ground or useless state, and D is a degradation operator, annihilating the
ground, and declaring the figure as ground. Within empirical sciences, the



above elements represent certain gross procedures; U corresponds to the isola-
tion of a prepared state of affairs from surrounding elements before subsequent
detailed investigations, L corresponds to “cleaning the slate”, that is, returning
to an undifferentiated background situation, and D corresponds to considering
a given state of affairs as no longer relevant to the investigation. These elements
also formalize certain figure-ground relationships familiar in gestalt psychology.

Definition 9 An algebra with unit I and generated by elements satisfying the
multiplication law of Table 4 we call a figure-ground, or utility algebra.

Proposition 3 The idempotent M =1 —U — L + D is central of corank 1.

Phenomenologically, M is rather mysterious; it somehow incorporates the con-
ventions that we’ve adopted: that I takes over the role of Id and the role of 1
in the operationalization process.

Proposition 4 For allw € W, L{w, ) = I{w, -).

Phenomenologically this equality means that if we detect existence, create the
background state, detect the existence of this background state, and create a
state w, then the same result obtains if we simply skip the intermediate creation
of the background state.

By Table 4 we deduce from this proposition that for all w € W we have

Proposition 5 LG, (I-U)=R{L}.

Phenomenologically this means that if we operate on the background state and
then remove the figure, we get a multiple of the background state, that is, there
is a unique background state.

Proposition 6 F, = UG, L, F, =UG,U, and W = LG,U ® R{L}.

Suppose now that (G, W) is a general substitution operation form algebra. We
now consider a series of postulates imposed on (G, W) which in their totality
will lead (G, W) to be isomorphic to an operationalization of a substitution form
algebra.

10



Postulate 1 G, contains a utility subalgebra with generators U, L, and D sat-
1sfying the rules of Table 4.

Postulate 2 The idempotent M =1—U — L + D is central and has a kernel
of codimension 1.

Given z € G,, then since I ¢ ker(M), there is a unique real r such that
M(zx —7rI) =0. Let 29 = 2 —rl, y = g — LagU, z = y — UyU, and w =
z— Lz(I-U).

Proposition 7 Under Postulates 1-2, ¢ = UwL+UyU+ Lz(I1-U)+ LxoU +rl

Proof: We have in terms of zy and using utility algebra multiplication rules:

UwL = (U-D)zo(L—D), (11)
UyU = (U - D)xoU, (12)
L:1-U) = Lao(I-U). (13)

Thus UwL +UyU + Lz(1-U) + LaoU = (U — D)ao(L—D+U) + Lxg = (L —
D+U)xy = xg, where we’ve used the fact that Mazo =0 < (U—D+L)xg = xo.
Q.E.D.

Proposition 8 Under Postulates 1-2 the subspaces UG, L, UG, U, LG,.(I1-U),
LG,U, and R{I} are linearly independent.

Proof: Assume UzL + UyU + Lz(I — U) + LwU + rI = 0. Multiplying by
L on the left and by U on the right, we get LwU = 0 and so UzL + UyU +
Lz(I - U) + rI = 0. Multiplying by U on the right, we get UyU + rU = 0 so
we have UxL + Lz(I—U) 4+ r(I — U) = 0. Multiplying by L on the left, we
get Lz(I—-U)+rL =0 and so UzL + r(I — U — L) = 0 which multiplied by
U on the left gives UzL 4+ r(—D) = 0. Combining the last two equalities we
conclude that rM = 0. By Postulate 2, » = 0, and this combined with previous
equalities leads to linear independence. Q.E.D.

In view of Proposition 3, we now introduce:

Postulate 3 For all w € W, L{w, -) = L{w, -).

Lemma 1 Under Postulate 8, for allw € W and all x € G, (w,z) = (w,zL)
and (w,zU) = (w,zD).
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Proof: For all u,v € W we have: (u,I)(v,I) = (u,I{v,-)) = (u,L(v,-)) =
(u, LY{v,I), thus (u,I) = (u, L) since v is arbitrary. Now, (w,z) = (z'w,I) =
(x'w, Ly = (w,xL). Finally, (w,2U) = (w,zUL) = (w,zD). Q.E.D.

Let us now perform the decomposition given by Proposition 7 on the element
z = {w,-). By Postulate 3 we readily conclude that Mz = 0 so zg = x.
Using Postulate 3 and the formulae in the proof of Proposition 4, we find:
UwL = 0, UyU = 0, LzoU = {U'w, ), and Lzg(I—-U) = I - U)'w, ).
Thus K{w, ) = {U'w,-) + I{(I — U)'w,-), the two parts lying in LG,U, and
LG, (I —U) respectively. Let now j : W — G, be the map w — I{w,-). We've
thus shown that jW C LG, U & LG,(I — U). Since in an operationalization we
have an equality, we assume:

Postulate 4 jW = LG, U & LG, (I1-U).

In view of Proposition 5 we also adopt.

Postulate 5 LG, (I-U) =R{L}.

Lemma 2 Under Postulates 3-5, x{w, - )yL = (w, y)zL.

Proof: We have z(w,-)yL = zL{w,-)yL by Postulate 4. Now, by utility algebra
and Postulate 5, L{w, )L = L{w,)L(I — U) = sL for some real s. Let v € W,
then, using utility algebra, Lemma 1, and Postulate 3,

<Uv L<w7 >yL(I - U)> = <U’I<y/w7 >> = <’U7L><y/w’1> = <U7I> <wa y>

Also (v, sL) = s{v, L) = s{v,I) and since v is arbitrary, s = (w,y). Q.E.D.
Now if jw; = jws then for all z, (wy,x) = (wq,x) since for arbitrary v,
(v, {w;, Yx) = (v,I){w;, x). Thus it makes sense to talk of the pairing (-,-) as

also being defined on jW x G,.. Now L € jW by Postulate 4 since L = LI(I-U).
In view of Table 2 we now assume:

Postulate 6 (L,I) =1

Theorem 4 Let (G, W) be a substitution operation form algebra satisfying Pos-
tulates 1-6, then it is isomorphic to the operationalization of a substitution form
algebra (F, V).

12



Proof: In view of Proposition 6 we define F,, = UG,.L and F, = UG,U. By
Postulate 4 and Proposition 7 we have G, = F, ® F., ® jW & R{I}. We also
have by Postulate 5 that jW = LG,.U @& R{L}. We can thus decompose W as
V@R with jV = LG, U and j(0,1) = L. The triple of spaces F,, F,., and V can
now be given the structure of a substitution form algebra with D = UIL € F,
identified with 1 and U = UUU € F, identified with Id. We maintain the join
of G and notice that since F.F, = UG, UUG,L C UG, L = F,, we can maintain
the concatenation also. The form algebra axioms (Definition I.1 and 1.2) are
readily verified. To prove that (G, W) is the operationalization of (F, V') a check
must be made of the validity of Tables 1-2 which is quite straightforward using
utility algebra, Lemmas 1-2 and the Postulates. Q.E.D.

Theorem 5 LetT = (G, W, Q) be a formal statistical operation theory in which
(G, W) satisfies Postulates 1-6, then T is the operationalization of a formal
statistical theory To if and only if (I —U) VU € Q(g).

Phenomenologically this means that the theory allows for the separation of the
figure from the ground as one of its operational procedures.

Necessity being obvious, we prove only sufficiency.

Proof: If o € S then it can be written as (-, I-U)(I-U)*o+(-,U)Uxc. Now,
by Lemma 2 and Postulates 3 and 5 we have I{o, Y(I-U) ={(I-U)'o,-)L =
(o,(I-U))L. Thus (I-U)*o = L. We see therefore that S = conv(U*SU{L}).
Let Sy = UxS. By Theorem 4, (G, W) is the operationalization of a substitution
form algebra (F, V). We note that Sy C V. Suppose now that £ = z1V-- -V, €
Q(m). Let x; = p; + ¢ + t; (-4, +) + 8, + r;I. Composing we have

(I—U)Ufrl\/---\/Uxm: (I—U)\/ \/(pi—l—d)i-l—til(m,-)+si1+riId),
=1

and composing each of the Ux; atoms with (I — U) vV U we have that

(I =U)V \/((pi+ 1)V (¢; + t;1{0,-) +r;1d)) € Q.

=

Il
_

K3

After truncating dummies, this has the form (I-U)Vq V- --Vqi V61 V- - VO, with
q; € F. and 0; € F,. Let P be the set of forms By =q V---Vq VoL V---VO,
that can be obtained this way, along with their truncations. We claim that
To = (F,V,P) is a formal statistical theory. Let us check the axioms. Now,
I-U)vUZy=(1-U)v(MIdV---V A,Id) thus IdV ---V A,Id € P
and stochastic splitters exist. The condensation, composition and conversion
axioms are satisfied by virtue of their being true in 7. The truncation axiom
is satisfied by construction. The original form Ej is exhaustive by virtue of the
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exhaustivity of E on S and the fact that (I — U)’Sy = {0}. The exhaustion of
some of its truncates is therefore a condensation of Fy possibly with 1 placed
on some of the exits. Now 1 € P since 1 = Ey for E = I{L, ) and so the
exhaustion axiom is satisfied. Now for o € Sp, (o,p) € [0,1] since it is true in
T, also

(0,1) = (0,D) = (0,UL) = (U'0,L) = (U'0,I) = (0,I) =

since o € U'S; furthermore, o transformed by an exit 6 is again in Sy since
6 = UyU for some y and so §'c = U'y'U’c € U’S; finally, we have (o,z) =
(U'o,xL) = (o,UxL) so F, separates states in Sy. Thus (F,V, P) is a formal
statistical theory. If © € P then O is of the form Ej for some E € Q. Thus
to prove that T is Ty we need only show that E can be recovered from Ejy by
the deductive system. Now, 1 = (L,E) = > .(t; + s; + ;). We can thus by
fragmenting (Definition I.15) the first atom of (I—U) VU get an operation form

p

V (\/ Ti(I—

=1 i=1

<*§
>
=
—

(V6@ =) v (
i=1

By composition, seeing that I{c;,-) € Q, and L = Hw, ) € Q we get an opera-
tion form

<=
<ﬁ

(V (X =U)(oi,) V (

1 i

P
\/ )) V UE,.

% 1

Now UEO = OVszlUiCi, U<O'i,'> = UL(O'“> = 1<Ui7'>7 (I—U)L: L—-—D=
Q) — 1. Dropping the dummy 0, we now get the form

p p
\/ (t;L{o;, ) {0y, ") \/ —5;1
i=1 i=1

(

(riI — TiId)) (

1 i

(pi + 8:1 +¥; + t;1{0y, ) + r;1d)).

=
<@

[ 1

An appropriate condensation gives E. Q.E.D.

Ezample 1: Let T = (F,V, P) be a formal statistical theory whose associated
statistical theory is a classical n-dimensional Boolean theory. Now P must
contain an operation form X = x; V --- V x,, which is the classical fractioning
operation, separating each state into the pure fractions composing it. That is,
in the standard geometric representation of Examples I.1 and 1.2, X has the
form (ei{(ct,-),... e (0™, ) where

e; = (0,...,0,1,0,...,0) €O, (14)
ot = (0,...,0,1,0,...,0) € S (15)

with 1 in the i-th place. In the operationalization T of T one has the operation
X=(I-U)VvXandsoalso(I-U)LVX. Now (¢/,I-U) =0, (w,I-U)=1
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and L = I{w,-) so X is the fractioning operation for S = conv(S U {w}) which
is an n-dimensional simplex. Thus by Theorem 1.2, T has associated to it an
n + 1-dimensional classical Boolean statistical theory. This implies that a finite
dimensional classical Boolean theory can be constructed by repeated opera-
tionalizations starting with the trivial one-dimensional theory possessing only
one state. Notice that the operation version of the standard classical theory
is not an operationalization since then G, is the algebra of n x n real matri-
ces and has a trivial center and so cannot posses the idempotent M of corank
1. This means that the present view of Boolean theories can only be main-
tained by keeping operationally distinct statistically indistinguishable elements.
Classical Boolean theories can thus be viewed as either based on purely formal
distinctions, or alternatively as those in which one can nest sharp figure-ground
relations to a depth given by the dimension of the state space.

3 Second subsumption: elimination of state
preparations

Suppose that (G,W) is a substitution form algebra and (G, W, Q) a formal
operation statistical theory. The state space S can be conventionally eliminated
by identifying it with the set of elements of the form I{o, ), that is conversion
operations to elements of S. We begin thus identifying W with jW C G,..

Proposition 9 jW is a right ideal of G, with the property that if 0,¢ € jW
then 8¢ = (0)¢ where (-) : jW — R is a linear form satisfying the separation
condition:

(Va, (0z) = (¢z)) = 0 = ¢.

Proof: By the proof of Proposition 1, I{w, ) I{v, ) = (w,DI{v, ) so {-) = {-,I).
Q.E.D.

Definition 10 A statistical ideal W C G, of an operation form algebra is a
right ideal with the property that a,b € W = ab = {(a)b for some linear functional
() on W satisfying the separation property of the penultimate paragraph.

Proposition 10 If W is a statistical ideal of an operation form algebra G then
the pair (G, W) becomes a substitution operation form algebra, if we define the
functional {-,-) : W x G — R on W x G, by (w,z) = (wx) and extended to
sum on joins, and if for w € W we define the map (w,-) : G, — G, as right
multiplication: x(w,-) = zw.
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We can thus now give an alternative definition of a formal operation statis-
tical theory.

Definition 5 ' A formal operation statistical theory is an operation form algebra
G with the following additional structures:

1. A convex subset S of a statistical ideal W of G.

2. A subset Q C G called the set of operation forms.

Adopting the same conventions as in Definition 5 the following axioms are now
assumed:

Aziom 1’ Same as Aziom 1.

Azxiom 2' S C Q(l),

Aziom 3’ Same as Aziom 3.

Axziom 4’ Let zV E € Q and suppose Sz = {0} then E € Q.
Aziom 5’ Same as Aziom 5.

Axiom 6' Same as Aziom 6.

Axiom 7' If © is an atom of E € Q and o € S is such that {(cx) # 0 then

_ oz
x*a——<0m> €s.

There is no axiom corresponding to Axiom 8 since its content has been incor-
porated into the definition of a statistical ideal.

We have not yet achieved an elimination of state preparation notions since
the above axioms refer to a set of states S. We can however introduce a structure
that simply eliminates those portions of the previous definition that refer to
states and then perform a subsumption.

Definition 11 Let G be an operation form algebra and (G, Q) a structure de-
fined by eliminating (1) and Azioms 2', 4', 6', and 7' in Definition 5. We
call such a structure a formal general operation statistical theory.

16



Let us now see how the structure so defined subsumes that of the previous one.

Suppose (G, Q) is a formal general operation statistical theory and suppose
W C G, is a statistical ideal. We claim that there is a largest set Sy C WﬂQ(l)
for which the statements of Axioms 6’ and 7’ are true. Let C be the convex
set of w € W N Q(l) for which the statement of Axiom 6’ is true. For w € C
using then the composition axiom and the fact that (wE{z}F) = (wE) = 1 one
concludes that if (wz) # 0 then z xw € C.

Define now

Soz{w€C|x*w€Q(1) if (wz) #0and z € E € Q}.

Now Axioms 2’ and 7’ are satisfied for Sy. Firstly, we have w € Sp = w =
Ixwe Q(1)7 which takes care of Axiom 2’; and secondly, if = is an atom of F
and y of F and (z * wy) # 0 then (way) # 0 and y*z *w = (zy) * w, but zy is
and atom of E{z}F and so by definition of Sy, y * (x x w) € Q(l) and Axiom 7’
is satisfied. Thus the structure defined by (G, Q, W, Sp) now satisfies all axioms
except possibly Axiom 4’; this however can simply be appended as a derivation
rule and the structure completed with respect to this rule.

Definition 12 The formal operation statistical theory constructed above is called
the canonical theory associated to the ideal W .

We may thus forgo the notion of state preparation and study only theories
that posses operations but for which the notion of a statistical state is foreign.
Operations can still be construed as a sort of transformation of the “state of
affairs”, but we no longer have the power to create any a priori determined
state of affairs. Social, economic and political sciences can possibly be viewed
as being of this type.

Ezample 2: Let G, = M(2,R), the matrix algebra of 2 x 2 real matrices.

One can easily verify that the right ideals of GG, are all of the form AG, where
A is factorizable into a tensor product of two vectors:

A= o) =ao@.

For A # 0 these are statistical ideals with (Am) = (a,b)m ( (Ci >

For statistical ideals we see that two such matrices define the same ideal if
and only if the two corresponding vectors (¢,d) define the same point in the
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real projective line, that is, if and only if they are colinear; the ideal itself is
then {(¢,d) ® (a,b) | (a,b) € RQ}. Any statistical theory will have its state space
contained in the line ca 4+ db = 1 and would thus either be reduced to a point or
be a segment, in which case we would be dealing with a two-dimensional theory
(Example 1.3).
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