Dissertação de Mestrado - Igor Caetano Diniz

Evaluating the use of Random Forest Regressor to Reservoir Simulation in Multi-region Reservoirs

Oil and gas reservoir simulation is a common demand in petroleum engineering, and research, which may have a high computational cost, solving a mathematical numeric problem, or high computational time. Moreover, several reservoir characterization methods require multiple iterations, resulting in many simulations to obtain a reasonable characterization. It is also possible to mention ensemble-based methods, such as the EnKF and the ES-MDA, which demand lots of simulation runs to provide the output result. As a result, reservoir simulation might be a complex subject to deal with when working with reservoir characterization. The use of machine learning has been increasing in the energy industry. It can improve the accuracy of reservoir predictions, optimize production strategies, and many other applications. The complexity and uncertainty of reservoir models pose significant challenges to traditional modeling approaches, making machine learning an attractive solution. Aiming to reduce reservoir simulation's complexities, this work investigates using a machine-learning model as an alternative to conventional simulators. The Random Forest regressor model is experimented with to reproduce pressure response solutions for multi-region radial composite reservoirs. An analytical approach is employed to create the training dataset in the following procedure: the permeability is sorted using a specific distribution, and the output is generated using the analytical solution. Through experimentation and analysis, this work aims to advance our understanding of using machine learning in reservoir simulation for the energy industry.